
1

The Mirage of Breaking MIRAGE:
Analyzing the modeling pitfalls in emerging “attacks” on MIRAGE

Gururaj Saileshwar
University of Toronto & NVIDIA Research

gururaj@cs.toronto.edu

Moinuddin Qureshi
Georgia Institute of Technology

moin@gatech.edu

Abstract—This paper studies common modeling pitfalls in se-
curity analyses of hardware defenses to highlight the importance
of accurate reproduction of defenses. We provide a case study of
MIRAGE [1], a defense against cache side channel attacks, and
analyze its incorrect modeling in a recent work [2] that claimed
to break its security. We highlight several modeling pitfalls that
can invalidate the security properties of any defense including (a)
incomplete modeling of components critical for security, (b) usage
of random number generators that are insufficiently random,
and (c) initialization of system to improbable states, leading to
an incorrect conclusion of a vulnerability, and show how these
modeling bugs incorrectly cause set conflicts to be observed in
a recent work’s [2] model of MIRAGE. We also provide an
implementation addressing these bugs that does not incur set-
conflicts, highlighting that MIRAGE is still unbroken.

Index Terms—cache side-channel attacks, randomized caches.

I. INTRODUCTION

Security analysis of emerging defenses is challenging. Un-
like performance analysis where approximations of a design
are often acceptable, security analysis requires an exact repro-
duction of the original implementation. Even minor variations
in implementations can lead to divergent security properties.
Without an exact reproduction of the defense, there is a risk of
a false discovery of a vulnerability due to incorrect modeling.

This work seeks to highlight the importance of accurate
reproduction of defenses, by studying the pitfalls of incorrect
modeling. We do this through a case study of MIRAGE [1], a
defense against set-conflict based cache side channel attacks
and analyze the implications of its incorrect modeling in a
recent work [2] that analyzed the security of MIRAGE.

Set-conflict based cache side channels allow a spy process to
leak sensitive data of a victim process through set-conflicts in
a shared cache, which allow addresses accessed by the victim
to be observed by the spy. To defend against these attacks,
recent randomized caches [3]–[5], randomize the mapping
of addresses to cache sets to obfuscate the pattern of set-
conflicts. Subsequently, newer attacks [4], [6]–[8] emerged that
succeeded despite such obfuscated set-conflicts.

MIRAGE [1] proposed to eliminate set-conflicts with a
fully-associative design. It achieves this with a set-associative
tag-store that over-provisions invalid tags in sets and with load-
balancing that guarantees new addresses are always installed in
invalid tags without set-conflicts. Cache installs result in global
evictions, where a replacement candidate is selected randomly
from the entire cache, leaking no address information about in-
stalled lines. MIRAGE guarantees global evictions for system
lifetime and thus eliminates set-conflict based attacks.

From 2018 to 2021, half-a-dozen randomized cache de-
fenses were broken within months whereas MIRAGE has been
unbroken since 2021, until a recent work “Are Randomized
Caches Truly Random? (ARCTR)” [2], claimed to observe
set-conflicts in MIRAGE. However, on deeper inspection, we

discovered ARCTR’s set-conflicts were due to their inaccurate
modeling of MIRAGE. Below, we describe modeling pitfalls
that can break the security of any defense, including MIRAGE,
and discuss how ARCTR suffers from these modeling issues.

Pitfall #1: Not modeling all the components in a defense.
Even if a component does not affect the common case behavior
(e.g., no visible performance impact), not modeling it can
adversely affect system behavior in a pathological scenario and
thus greatly reduce its security. As an example, we observe that
ARCTR’s [2] model of MIRAGE does not implement global
evictions from the original work. This leads to more tags being
valid than the cache capacity, and some sets being naively full,
which leads to an incorrect observation of a set conflict. We
describe this in detail in Section IV-B (Bug-1).

Pitfall #2: Using randomizers that are non-uniform.
Randomization based defenses fundamentally rely on random-
izing functions being correctly implemented. If the defense is
unable to randomize uniformly, it can fail catastrophically. For
example, the ARCTR [2] work’s implementation uses a buggy
cipher implementation for randomizing mapping of addresses
to cache sets, which results in a biased mapping of more
addresses towards a few sets. This causes a few sets to be
fully occupied and results in set conflicts. We describe this
implementation bug in Section IV-B (Bug-2).

Pitfall #3: Using non-independent randomizers. For de-
fenses that rely on multiple randomizing functions, it is impor-
tant that each of these be mutually independent. For example,
if a defense uses two random functions, like MIRAGE, and
both are correlated, address collisions in one function may
result in collisions in the other as well, thus reducing the
effectiveness of multiple functions. In the limit, this can cause
set-conflicts as frequently as a single randomizing function.

Pitfall #4: Initializing the system to improbable states.
The initial system state during security analysis determines the
adversarial effort needed to defeat a defense. If a study starts
from an almost broken state, an attack require negligible effort
– but if such a state is improbable under natural operation, then
such an attack is impractical. The ARCTR [2] work initializes
tags as valid with 50% probability, leading to a few cache sets
to start as already full, which is quite improbable in regular
operation. We describe this bug in Section IV-B (Bug-3).

After fixing the modeling bugs in the ARCTR [2] work,
we observed NO set conflicts, highlighting that MIRAGE
is not broken. Our code with bug fixes is at https://github.
com/gururaj-s/refuting HPCA23 randCache.

In the rest of the paper, we formalize the conditions for a
set conflict in MIRAGE [1] in Section III, show a case study
of the modeling bugs in the ARCTR paper [2] in Section IV
and Section V, and discuss future attacks in Section VI.

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2023.3297875

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nvidia Corp. Downloaded on August 11,2023 at 23:24:00 UTC from IEEE Xplore. Restrictions apply.

https://github.com/gururaj-s/refuting_HPCA23_randCache
https://github.com/gururaj-s/refuting_HPCA23_randCache

2

II. BACKGROUND ON MIRAGE

MIRAGE [1] is a randomized cache that provides security
against conflict based attacks by guaranteeing the abstraction
of a fully associative cache. It relies on three key design
components. First it provisions extra invalid tags in the LLC
to allow new addresses to be installed in the tag-store without
set-conflicts. Second, it uses load-balancing indexing based on
Power of 2 Choices [9] to guarantee the availability of invalid
tags. As shown in Figure 1, the tag-store is split into two
skews or partitions. When a new address is installed, it indexes
two sets (one in each skew) using a randomized mapping,
and is installed in the set with fewer valid tags. This ensures
balanced availability of invalid tags across sets and new cache
line installs do not incur a set-associative eviction.

The third component is cache line replacement via global
evictions. When a new line is installed, it evicts an entry
randomly selected from among all the data-store entries.
The resident data in the entry is evicted along with its tag
(identified based on a Reverse Pointer or RPTR lookup), and
the new line’s tag is associated with this entry using a Forward
Pointer (FPTR). Thus, evictions occur in a fully associative
manner and do not leak information about installed addresses.

FPTR

RPTR

Fig. 1: Design of MIRAGE and its Abstraction to Software.

Security Guarantee: MIRAGE [1] suggests that over-
provisioning an 8-way cache with 6 extra ways (75% extra)
in the tag-store guarantees the probability of a set-associative
eviction is once in 1034 cache installs, which would take
almost 1017 years. MIRAGE ensures set-conflicts are unlikely
in system lifetime and eliminates conflict-based attacks.

III. ANALYZING MIRAGE’S SECURITY GUARANTEES

A recent work, ARCTR [2], claimed to be able to observe
frequent set associative evictions in MIRAGE. To that end, we
first reason about the conditions required for a set-conflict in
MIRAGE, and then analyze the ARCTR’s implementation to
understand why they observe set-conflicts.

A. Conditions Required for Set-Conflicts in MIRAGE [1]

A set conflict in MIRAGE occurs only when a new line to be
installed finds the two indexed sets where it may be installed
are both full. At that point, a set-conflict occurs (instead of a
global eviction) and the cache invalidates an existing address
from these sets to free up a tag for the new address.

Intuitively, the Power-of-2-Random-Choices indexing cou-
pled with global evictions, makes such an occurrence quite
improbable. For a set to grow its occupancy by 1 (w → w+1),
both indexed sets need to have at least w lines. Thus, the

probability of high loaded sets becomes smaller (pw+1 = p2w,
if pw is the probability of a set with at least w lines). At the
same time, global evictions reduce the occupancy of sets. As
the probability of a way in a set being occupied squares with
each additional way, MIRAGE with 6 extra ways makes the
probability of two random sets being fully occupied extremely
small (within 10−34). We refer the reader to the original
work [1] for a more formal analysis.

B. Implications of an Observed Set-Conflict

If a set-conflict is observed in MIRAGE, the root-cause is
likely to be one of the following:

1) Implementation Bug in the Randomizing Functions.
A key assumption of the Power-of-2-Choices indexing
in MIRAGE is that randomizing function is uniformly
random and the functions in each skew are independent.
If either of these assumptions are broken, e.g., due to a
bug in the cipher, it would result in incorrect functioning
of load-balancing. Or the global evictions might not be
sufficiently random due to incorrect implementation.

2) Design Flaw in Power-of-2-Choices Indexing: If there
are no bugs, frequent set-conflicts are indicative of a
deeper algorithmic flaw in the power-of-2-choices index-
ing and global evictions. This would be an interesting
discovery given the rich body of theoretical results
highlighting the load-balancing properties of Power-of-
2-Choices [9].

IV. CASE STUDY OF BUGS IN ”ARE RANDOMIZED
CACHES TRULY RANDOM?” [2]

A recent work “Are Randomized Caches Truly Random?
(ARCTR)” [2], published at HPCA’23, claimed to observe set-
associative evictions in MIRAGE once every 100,000 cache
installs, implying a breach in its security. However, in the
process of identifying the root-cause of set conflicts, we
inspected their code1 and found fundamental bugs in their
MIRAGE implementation to be the cause of these set-conflicts.

We identified the following bugs in both the bucket and
balls simulation and the cache simulator models of ARCTR
[2], as shown in Figure 2:

1) No implementation of Global Evictions in both the
bucket and balls model and the python cache simulator.

2) A broken cipher implementation in the address to set
mapping function in the cache simulator, that does not
provide uniform randomization.

3) A simulation bug in the cache simulator where the cache
state is initialized with fully occupied sets which are
improbable in MIRAGE.

After fixing these bugs, we observed NO set-associative
evictions, highlighting that MIRAGE is indeed not broken.
Our code with bug-fixes is open-sourced at this link2. Next,
we provide an analysis of the bugs in the ARCTR work [2].

1https://github.com/SEAL-IIT-KGP/randCache
2https://github.com/gururaj-s/refuting HPCA23 randCache

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2023.3297875

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nvidia Corp. Downloaded on August 11,2023 at 23:24:00 UTC from IEEE Xplore. Restrictions apply.

https://github.com/SEAL-IIT-KGP/randCache
https://github.com/gururaj-s/refuting_HPCA23_randCache

3

Buggy Initialization Led to
Already Full Sets in ARCTR

FPTR

RPTR

Data-Store and RPTR-Invalidation
not modeled in ARCTR

Bug in Cipher Caused Non-Uniform
Randomization in ARCTR

Fig. 2: Components of MIRAGE which were incorrectly
modeled in the ARCTR [2] work are highlighted in red text.

A. Bugs in the Bucket and Balls Simulation

The bucket and balls simulation of MIRAGE simulates a
large number of ball throws (cache line installs) into randomly
selected buckets (cache sets) to simulate cache lines being
installed into random sets in MIRAGE.

A key component of MIRAGE is global eviction which
randomly evict entries from the cache and crucially reduces the
high occupancy sets. To model this, with each ball insertion,
a randomly selected ball needs to be evicted from among all
the balls in buckets, to signify a cache replacement occurring
on each cache line install.

The ARCTR bucket and balls simulation crucially does not
model global evictions, as shown in Figure 2. This causes the
simulator to insert more balls in buckets than even the cache
capacity leading to distributions of balls in buckets that are
incorrect and not representative of MIRAGE [1]. We detected
this by adding an assert statement checking that the number
of balls in buckets is no more than the cache capacity, and
we detect an assert-failure before the first bucket spill (set
associative eviction).

In Figure 3, we reproduce results from Figure 6 of the
ARCTR paper [2]. In the original result (which had assert
failures) in Figure 3a, the number of ball throws (trials) before
a collision (bucket-spill or set-conflict) grows linearly. By
adding a remove ball() implementation to model global evic-
tions as a bug fix, we obtain the results in Figure 3b showing
a super-exponential trend with increasing associativity. With
the bug fix, we observe no bucket spills (set conflicts) with
associativity of 13 or 14 ways even after 1 billion ball throws,
matching the results from MIRAGE [1].

8 9 10 11 12 13 14
Number of ways (associativity)

104

105

106

107

108

109

Tr
ia

ls
 p

er
 c

ol
lis

io
n

(b
uc

ke
t

sp
ill

)

(a) Original [2] (assert failure)

8 9 10 11 12 13 14
Number of ways (associativity)

104

105

106

107

108

109

Tr
ia

ls
 p

er
 c

ol
lis

io
n

(b
uc

ke
t

sp
ill

)

No bucket
spills

(b) After Bug-Fix

Fig. 3: Number of trials before a collision (bucket spill) –
Figure-6 in ARCTR paper. (a) In the original code [2], the
trials before a set-conflict grows linearly. (b) After the bug-fix,
it is super-exponential: we see no bucket spills at associativity
of 14 (8 + 6 extra ways), the default in MIRAGE [1].

B. Bugs in the Python Cache Simulator

The ARCTR paper [2] also presents a python cache simu-
lator model of MIRAGE showing set-conflicts are observable
under random accesses. We observed the following bugs
causing these incorrect results.

Bug-1. The python cache simulator code also does not
implement Global Evictions in MIRAGE. As a result, it also
suffers from similar assert failures as the buckets and balls
model (lines in cache exceeding the cache capacity), once
we added in an assert checking whether the lines in the
cache exceed the cache capacity. In personal correspondence,
the authors of the ARCTR work shared an updated code
implementing global evictions, but we identified two additional
bugs that led to incorrect results.

Bug-2. We identified a bug in the cipher used for ran-
domizing the cache set indexing. The security of MIRAGE
relies on a uniformly random set-index function. However,
we discovered that the cache set indices generated in the
ARCTR paper’s code were not uniformly random, but in
fact biased towards certain sets. The root-cause was a buggy
implementation of the PRESENT cipher used for the cache
set indexing in the author’s code. We tested it with known test
vectors from the PRESENT paper [10] and the ARCTR imple-
mentation fails those tests, generating incorrect ciphertexts for
known plaintext and keys. Replacing this buggy cipher with a
standard implementation of AES-128 or PRINCE-64 (used in
the MIRAGE paper [1]), with random keys, addressed this.

Figure 4 shows the distribution in the set index for 1 million
random addresses with the original code and after the bug fix.
Figure 4(a) shows much skew in distribution of indices across
possible values in the original code. Replacing this cipher
with AES-128 or PRINCE-64, which is used in the MIRAGE
paper, with random keys, we were able to produce uniform
set-indices across addresses, as shown in Figure 4(b,c).

0 5000 10000 15000
Indices (Sorted)

0

100

200

Co
un

t (
ou

t o
f 1

 m
illi

on
) (a) Original

0 5000 10000 15000
Indices (Sorted)

0

100

200

Co
un

t (
ou

t o
f 1

 m
illi

on
) (b) Bug-Fix (AES)

0 5000 10000 15000
Indices (Sorted)

0

100

200

Co
un

t (
ou

t o
f 1

 m
illi

on
) (c) Bug-Fix (PRINCE)

Distribution of Set-Index for 1 Million Addresses

Fig. 4: Bug in the Set-Index function causes non-uniform
indices. MIRAGE relies on a uniformly random cipher. Across
1 million random addresses, (a) the cipher in the original
code has a skewed distribution with std-dev of 31 that is not
uniformly random. (b,c) Using a standard AES or PRINCE
cipher results in a uniform distribution, with std-dev of 7.9.

Sanity Check with Analytical Model: We can corroborate
the results from Fig 4 using a simple analytical model. If
1 million balls (lines) are thrown in 16,364 buckets (sets),
then the average (µ) is equal to 61. Given this is a Poisson
process, we can estimate the standard deviation (σ) across
buckets (sets) to equal the square root of the mean, thus
σ =

√
61 = 7.8. We observe that with AES and PRINCE

indeed we get a σ of 7.9, which is close to the expected
value. For a well-behaved process, we expect values that

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2023.3297875

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nvidia Corp. Downloaded on August 11,2023 at 23:24:00 UTC from IEEE Xplore. Restrictions apply.

4

are 6 standard deviations away from the mean to be highly
improbable (about 1 in a billion), so we should not expect to
see values above 61 + 6 · 7.9 = 108, and that is indeed the
case with AES and PRINCE.

However, with the author’s implementation of PRESENT,
we get σ = 31, denoting a non-Poisson process with very
high variation across buckets (sets). Indeed, we see values
exceeding 200 with the PRESENT implementation, indicating
significant non-uniformity across sets. This non-uniformity
breaks the assumption of MIRAGE that the cache index is
decided by a uniformly random mapping of addresses to sets.

Bug-3. We discovered an additional bug in the simulator that
the tag-store is initialized by assigning each tag valid with a
probability of 50%. However, this results in high occupancy
levels in a few sets, which is virtually impossible under load
balancing in MIRAGE. Figure 5(a) shows the set-occupancy
levels for different sets at initialization in the ARCTR code,
and we observe that ARCTR simulation starts from a state
where more than one set is full at initialization time. In
essence, to break MIRAGE, the paper assumes a broken state.

The correct initialization methodology for the tag-store is
to start with an invalid cache and insert K random addresses
(without loss of generality, we used 1 million addresses)
through the cache interface including load-balancing and
global evictions. Figure 5(b) shows the initial set-occupancy
levels in the simulations after this bug fix, where the high
occupancy buckets are prevented by Mirage.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Valid Tags Per Set

101

103

Co
un

t o
f S

et
s

(a) Original Code

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Valid Tags Per Set

101

102

103

104

Co
un

t o
f S

et
s

(b) After Bug-Fix
Set-Occupancy in Tag-Store at Initialization

Fig. 5: Bug in Initialization of Tags. (a) Original code assumes
each tag can be valid with probability=0.5, which results in
already full sets at initialization. (b) Bug fix: Cache starts
from an invalid state and has K random addresses inserted and
resulting in a representative set occupancy at initialization.

V. RESULTS: NO SET-CONFLICTS AFTER BUG-FIXES

After fixing these bugs – ensuring a correct global eviction
implementation, correct initialization of tag-store, and using a
functionally correct cipher (AES/PRINCE) – in the author’s
python cache simulator, we observe no set-associative evic-
tions (valid tag evictions) for varying cache sizes. This further
invalidates the claims made in the paper that Mirage is broken.
Figure 6 shows the results with the original ARCTR code and
the results after the bug fixes.

VI. VULNERABILITY TO CACHE OCCUPANCY ATTACKS

Given that MIRAGE is now shown to be secure against set-
conflict based attacks so far, a natural question would be to
study its vulnerability against other cache attacks, like cache
occupancy attacks. Note that cache occupancy attacks are ex-
plicitly highlighted to be outside the threat model of MIRAGE
in the original paper [1]. And yet, a recent work [11] claims to

16 32 64 128
Size of Cache in MB

0.5
1.0
1.5

Ca
ch

e
re

fe
re

nc
es

1e6

100K 200K

800K

1.5M

(a) Original ARCTR Code [2]

16 32 64 128
Size of Cache in MB

0.0
0.5
1.0
1.5

Ca
ch

e
re

fe
re

nc
es

1e6

No Set-Associative Evictions
observed

(b) After Bug-Fix

Fig. 6: Number of cache references before a set-associative
eviction (valid tag eviction) – Figure-7 in the ARCTR paper.
(a) In the original code [2], the cache references before a set-
conflict grows linearly. (b) After the bug-fix, there are no set-
associative evictions in MIRAGE with 6 extra ways.

demonstrate occupancy attacks on MIRAGE. Given that MI-
RAGE (under global evictions) is functionally equivalent to a
fully associative cache with random replacement, an attack on
MIRAGE is equivalent to attacking a fully associative cache,
which is not designed to prevent occupancy attacks. Preventing
occupancy attacks requires alternative design paradigms such
as cache partitioning which restrict sharing of cache space, and
these are beyond of the purview of MIRAGE (or in general,
any scheme that randomizes the line-to-set mapping), which
is designed to prevent set-conflict based attacks.

VII. CONCLUSION

During the last decade, the importance of security has
greatly increased in the architecture community. With a new
paradigm, comes a new way of thinking. For ensuring security,
it is important to think in terms of the worst-case, and pay
attention to the details, otherwise, approximations and minor
changes can greatly affect the security properties. We show this
phenomenon with MIRAGE, where correct modeling provides
strong security. However, incorrect modeling, poor approxi-
mations, and buggy ciphers, as done in the ARCTR paper,
can lead to incorrect conclusions about the security properties
of MIRAGE. We thank the authors of the ARCTR work for
sharing their code publicly which enabled our analysis.

REFERENCES

[1] G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating Conflict-Based
Cache Attacks with a Practical Fully-Associative Design,” in USENIX
Security, 2021.

[2] A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay,
“Are Randomized Caches Truly Random? Formal Analysis of
Randomized-Partitioned Caches,” in HPCA, 2023. [Online]. Available:
https://github.com/SEAL-IIT-KGP/randCache

[3] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks via
dynamically encrypted address,” in MICRO, 2018.

[4] ——, “New attacks and defense for encrypted-address cache,” in ISCA,
2019.

[5] M. Werner et al., “Scattercache: Thwarting cache attacks via cache set
randomization,” in USENIX Security, 2019.

[6] F. Liu et al., “Last-level cache side-channel attacks are practical,” in
S&P (Oakland), 2015.

[7] A. Purnal et al., “Systematic analysis of randomization-based protected
cache architectures,” in S&P (Oakland), 2020.

[8] W. Song et al., “Randomized last-level caches are still vulnerable to
cache side-channel attacks! but we can fix it,” in S&P (Oakland), 2021.

[9] A. W. Richa et al., “The power of two random choices: A survey of
techniques and results,” Combinatorial Optimization, 2001.

[10] A. Bogdanov et al., “PRESENT: An ultra-lightweight block cipher,” in
CHES, 2007.

[11] A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay, “A
short note on the paper ‘are randomized caches really random?’,” arXiv
preprint arXiv:2304.00955, 2023.

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2023.3297875

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nvidia Corp. Downloaded on August 11,2023 at 23:24:00 UTC from IEEE Xplore. Restrictions apply.

https://github.com/SEAL-IIT-KGP/randCache

	Introduction
	Background on Mirage
	Analyzing MIRAGE's Security Guarantees
	Conditions Required for Set-Conflicts in MIRAGE MIRAGE
	Implications of an Observed Set-Conflict

	Case Study of Bugs in ''Are Randomized Caches Truly Random?'' randcachebroken
	Bugs in the Bucket and Balls Simulation
	Bugs in the Python Cache Simulator

	Results: No Set-Conflicts after Bug-Fixes
	Vulnerability to Cache Occupancy Attacks
	Conclusion
	References

