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Abstract—As Dynamic Random Access Memories (DRAM)
scale, they are becoming increasingly susceptible to Row Hammer.
By rapidly activating rows of DRAM cells (aggressor rows),
attackers can exploit inter-cell interference through Row Ham-
mer to flip bits in neighboring rows (victim rows). A recent
work, called Randomized Row-Swap (RRS), proposed proactively
swapping aggressor rows with randomly selected rows before an
aggressor row can cause Row Hammer.

Our paper observes that RRS is neither secure nor scalable.
We first propose the ‘Juggernaut attack pattern’ that breaks RRS
in under 1 day. Juggernaut exploits the fact that the mitigative
action of RRS, a swap operation, can itself induce additional
target row activations, defeating such a defense. Second, this
paper proposes a new defense Secure Row-Swap mechanism
that avoids the additional activations from swap (and unswap)
operations and protects against Juggernaut. Furthermore, this
paper extends Secure Row-Swap with attack detection to defend
against even future attacks. While this provides better security, it
also allows for securely reducing the frequency of swaps, thereby
enabling Scalable and Secure Row-Swap. The Scalable and Secure
Row-Swap mechanism provides years of Row Hammer protection
with 3.3× lower storage overheads as compared to the RRS
design. It incurs only a 0.7% slowdown as compared to a not-
secure baseline for a Row Hammer threshold of 1200.

I. INTRODUCTION

Technology scaling has been a double-edged sword [38].

While it has enabled high-density Dynamic Random Access

Memory (DRAM) chips, it has also uncovered security

vulnerabilities. A key vulnerability called Row Hammer

(RH) [20, 24, 30, 34] allows malicious processes to rapidly

activate rows (aggressors) of DRAM cells and flip bits in their

immediate neighboring (victim) rows [4, 11, 15, 17, 18, 27, 54].

There has been an arms race between RH attacks and

defenses. To prevent RH, prior proposals tend to proactively

refresh the contents of victim rows. This is called victim-

focused mitigation (VFM) [15, 20, 24, 28, 44]. However,

new attack patterns, such as the half-double attack from

Google [16, 25], have shown that they could trigger RH even in

distance-of-2 (or more) rows away from the aggressor row by

exploiting the mitigative action of VFM. To overcome this, the

state-of-the-art solution, Randomized Row-Swap (RRS) [51],

uses an aggressor-focused mitigation mechanism. To this end,

RRS swaps aggressor rows with random rows. Our paper finds

that RRS is not secure. We show that, akin to the half-double

attack, one can create a new access pattern by exploiting the

mitigating action of RRS (the act of swapping rows) to break

RRS. As a defense, our paper develops solutions that enable

future-proof, secure, and scalable row swaps.

∗This work was partially performed when Gururaj Saileshwar was affiliated
with Georgia Institute of Technology.

Malicious processes must activate their aggressor rows above

a certain threshold to trigger RH. This threshold is called the

RH threshold (TRH ). The RH threshold must be crossed on

a single row within an epoch of a refresh window (typically

64ms) to cause bit-flips within victim rows. To prevent this,

RRS proactively swaps aggressor rows with randomly chosen

rows before they reach TRH . The number of activations at

which a row is swapped is denoted by TS , and the ratio of

TRH to TS (i.e., TRH

TS
) is called the ‘swap rate’. The choice

of swap rate has security and performance implications.

For security, the swap rate is chosen such that no row in

memory can reach the TRH number of activations within an

epoch under years of attack. As shown in Figure 1, for a 32GB

16-bank DDR4-3200 system with a TRH of 4800 and a swap

rate of 6 (default in RRS), it would take more than 103 days

(∼3 years) for an untargeted attack to succeed (as studied in

RRS). A higher swap rate is even better for security, as it

increases the attack time by increasing the adversarial effort

of finding the attacked rows repeatedly. So, our first goal is to

investigate if a targeted attack pattern can break such defenses

in under 1 day. Our second goal is to develop a secure defense

against not just the Juggernaut attack pattern but even future

unknown attack patterns.

For performance, a lower swap rate is better as this reduces

the memory bandwidth and latency overheads. At a TRH of

4800 and a swap rate of 6, the system incurs an average

slowdown of 0.3% due to swaps. But as TRH drops in

future generations (it has dropped 29× in 8 years [21, 24]),

swaps will be needed after fewer activations, resulting in

increased slowdowns and higher storage overheads to track

more swapped rows. So, our third goal is to enable a low-cost

swap mechanism that securely tolerates lower swap rates to

minimize performance and storage overheads.

(TRH)

GOAL

Fig. 1. (a) Time-to-break (in days) Randomized Row-Swap (RRS) with varying
Swap Rate and Row Hammer Thresholds (TRH ). Our goal is to break RRS
in under 1 day. (b) The normalized performance of RRS as values of TRH

vary. Our goal is to minimize the performance overheads of RRS at lower
values of TRH and enhance security; thereby making it scalable and secure.
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Key Observation 1 – Security: The act of swapping rows,

called the swap operation, itself incurs additional row acti-

vations to read and write the original row. These additional

activations can be used to bias any target row towards higher

row activation counts. In the case of RRS, which picks random

rows for swaps, let us assume that the internal chip address of

the aggressor row is Rowaggr and that of the randomly chosen

row is Rowrand. A swap requires separately activating both

Rowaggr and Rowrand and copying each row to the other’s

locations. Thus, if we repeatedly cause Rowaggr to be swapped

to new locations, then we can increase Rowaggr’s activation

count each time due to the mitigating action (i.e., row swap) 1.

After a swap, if we continue to activate Rowaggr for other TS

activations, the memory controller must first unswap Rowaggr

before swapping it again with a newly chosen random location.

The unswap operation itself also performs an additional row

activation for Rowaggr. Thus, we can develop a targeted attack

that uses a combination of unswap-swap operations on a single

Rowaggr to surpass the RH threshold (TRH ) within 64ms. For

instance, even with 1 extra activation per unswap-swap, up to

1700 activations are possible for a row within 64ms, purely

due to unswap-swap operations. This can significantly assist

the demand activations, made to a row during an attack, to

cross a TRH of 4800. Such an attack, called the Juggernaut

attack, can break RRS in a significantly lower time (<1 day).

To defend against such attacks (and even future attacks), we

propose Secure Row-Swap (SRS). SRS avoids unswap-swap

operations from biasing row activations and thereby protects

against the Juggernaut attack. Moreover, we incorporate attack

detection in SRS to detect future attack patterns. As any

successful attack requires swapping a single row multiple times,

we deploy swap counters for mitigated rows in SRS to flag

potential attacks. Thus, SRS enables attack-detection capability

for protection against even future attacks.

Key Observation 2 – Performance: At lower RH thresholds

(TRH ≤ 4800), even benign workloads tend to have frequently

activated rows [30], requiring frequent swaps that can cause

a slowdown. While reducing the swap rate (e.g., from 6 to 3)

can reduce overheads and improve performance, this results in

more frequent outlier rows that cross 3 swaps in an epoch (e.g.,

once every few hours), causing potential security breaches.

However, our swap-count-based attack detection mechanism

can detect outlier rows, and then additional activations can be

prevented by simply pinning these outliers in the Last Level

Cache (LLC) for the rest of the refresh period (using <6% of

the LLC). This enables extending SRS into a scalable design,

called Scale-SRS, that can employ a swap rate of 3 at lower

values of TRH , reducing the performance and storage costs.

Contributions: This paper makes the following contributions.

1) We develop a new targeted attack pattern, Juggernaut, that

breaks RRS by exploiting the mitigative action of row swaps

(and unswap operations) in under 1 day.

1In spirit, this attack is inspired by the half-double attack against victim-
focused mitigation. The half-double attack uses the mitigating act of refreshing
neighboring rows to induce extra activations and trigger RH in farther rows.

2) We propose Secure Row-Swap (SRS), an RH mitigation

that prevents unswap-swap operations and defends against

the Juggernaut attack pattern. Moreover, SRS also includes

attack detection to detect future attack patterns against row-

swap-based RH defenses.

3) We propose Scale-SRS, a scalable solution that can securely

reduce the swap rate by combining outlier-based attack

detection and LLC-pinning of outlier rows as mitigation.

This improves the performance, storage costs, and scalability

of row-swap-based RH defenses at lower TRH values.

We show that Scale-SRS protects against the Juggernaut

under reduced swap rates. Compared to a baseline system

that does not protect against RH, Scale-SRS incurs an average

slowdown of only 0.7%, even at the TRH of 1200. In a similar

setup, we show that RRS can be broken in <1 day (regardless

of the value of the swap rate), incurs a slowdown of >4%,

and has 3.3× higher on-chip storage overheads.

II. BACKGROUND AND MOTIVATION

A. Threat Model

We assume a target system in which an Operating System

(OS) provides process isolation using virtual memory and page

tables. The memory system is composed of DRAM modules

that are vulnerable to Row Hammer (RH). The attacker(s) run

a malicious program in the user privilege and activate DRAM

rows rapidly. These rows, called the aggressor rows, can flip

bits (by leaking charge) in their neighboring victim rows.

We assume that an attack succeeds if an aggressor row

can trigger a bit-flip (i.e., when it incurs more activations

than the RH Threshold (TRH ) within a refresh interval of

64ms). Similar to prior work, to showcase the effectiveness of

our technique, we use a TRH value of 4800 [51] (also lower

TRH values to show scalability). It is the lowest demonstrated

TRH value for any attack pattern, including Single-Sided [24],

Double-Sided [54], or Half-Double [16] attack patterns.

B. Memory Organization and Timing Parameters

A DRAM-based memory system consists of independent

channels that are managed by individual memory controllers.

Each channel consists of ranks which are composed of several

banks that operate in parallel over a common memory bus.

Each bank contains rows of DRAM cells that are accessed via

a row-buffer. The memory controller issues an activate (ACT)

command to bring data into the row-buffer. To access another

row, the memory controller must replace the existing data in

the row buffer by issuing the precharge (PRE) command and

subsequently issuing another ACT command.

Each ACT command leaks a small fraction of the charge

within the DRAM cells of neighboring rows. DRAM cells also

leak charge naturally and employ refresh operations (typically

at 64ms intervals) to maintain data integrity. The time between

consecutive ACT commands into the same bank is determined

by the parameter tRC (Row Cycle Time). tRC is approximately

45ns for DDR4 systems. Thus, if we discount the time spent

on refresh, a bank can experience up to 1.36 million activations

(ACTmax) in the 64ms refresh window.



C. Row Hammer (RH) Thresholds Over Time

The attacker(s) can use RH to flip bits in victim rows by

activating an aggressor row above the RH Threshold (TRH ). To

make matters worse, the value of TRH has reduced dramatically

due to technology scaling. Table I shows the demonstrated

values of TRH across different DRAM generations. The table

uses old and new to distinguish different versions of the same

standard that span multiple technology nodes. The value of

TRH has reduced by nearly 29× in the last 8 years – specifically

from 139K [24] to 4.8K [21].

TABLE I
ROW HAMMER THRESHOLD – FROM 2014 TO 2021

DRAM Generation RH-Threshold

DDR3 (old) 139K [24]
DDR3 (new) 22.4K [21]
DDR4 (old) 17.5K [21]
DDR4 (new) 10K [21]

LPDDR4 (old) 16.8K [21]
LPDDR4 (new) 4.8K [21] - 9K [16]

In practice, attackers have used RH to flip bits in the page

table and cause privilege escalation [11, 15, 17, 54]. Attackers

have also used RH to read confidential data [27].

D. Tracking Rows

A key area of research has focused on developing efficient

designs to track aggressor rows [28, 44, 56]. Tracking aggressor

rows helps issue timely mitigation. The row trackers could be

placed within DRAM chips or memory controllers [15, 23, 45].

As the tracking mechanism is orthogonal to our mitigation

mechanism, it is not our main focus. We evaluate our design

with the state-of-the-art trackers, Hydra [45] and the Misra-

Gries tracker (used in RRS [51] and Graphene [44]), although

our mitigation is compatible with any aggressor tracker.

E. Victim-Focused Mitigation

The victim-focused mitigation (VFM) refreshes the victim

rows before the aggressor row receives more than TRH

activations [20, 23, 24, 28, 43, 56]. The number of victim rows

near an aggressor row is determined by the blast radius [29]. If

the blast radius is n (where n > 0), we would need to refresh

n rows on both sides of an aggressor row.

VFM tends to have two key concerns. First, VFM mecha-

nisms implemented in the memory controller need to know

the internal chip mappings of DRAM rows, specifically the

set of neighboring rows for any row. Unfortunately, this

proprietary internal row mapping information is not exposed

to the memory controller [23]. Alternatively, VFM methods

can be implemented inside DRAM chips, but this requires an

additional interface to coordinate with the memory controller.

Second, as shown by the recent half-double attack [16, 25],

refreshing n victim rows can itself cause RH on the n+1th

victim row. To overcome this, recent proposals suggest using

aggressor-focused mitigation. These proposals either blacklist

the aggressor rows or break their spatial correlation with victim

rows by displacing the aggressor rows [51, 52, 59].

F. Aggressor-Focused Mitigation: Randomized Row-Swap

Randomized Row-Swap (RRS) [51] is the state-of-the-

art aggressor-focused mitigation mechanism. RRS uses the

memory controller to swap aggressor rows with randomly

selected rows. The activation threshold for initiating a swap

is typically much lower than TRH and is denoted by TS . The

fraction, TRH

TS
, is called the swap rate. Typically, the swap rate

is chosen such that RRS can tolerate several years of attacks.

For instance, for a DRAM bank with 128K rows with a TRH

of 4800, RRS, with a swap rate of 6, can tolerate more than

3 years of attacks by an adversary continuously hammering

randomly selected rows. This is because it is challenging for

the attacker to guess the location of the aggressor rows as they

are constantly shuffled. Since swaps impact both the security

and performance of RRS, we dive deeper into its design.

Swaps and Unswaps in RRS: RRS swaps a candidate row

each time it crosses TS activations with a randomly chosen

row (swap-partner) within the bank. If the row needs to be

swapped again in the same refresh window (due to TS more

activations), the row and its current swap-partner need to be

unswapped before they may be swapped with new partners.

1. Security Implication: Each mitigative action of swap on an

aggressor row itself causes one additional latent activation at

the original physical location of the aggressor row, which may

be exploited by a new attack. To see why this occurs, consider

the five steps in a swap operation, as shown in Figure 2:

1) First, the aggressor row, Rowaggr (activated by the attacker),

is read out to the memory controller, as shown by 1 .

2) Then, the randomly chosen row, denoted as Rowrand, is

activated, and this closes row Rowaggr, as shown by 2 .

3) The original data of Rowrand is read out, as shown by 3 .

4) The data of Rowaggr is then written into the physical

location of Rowrand, and that row is closed, as per 4 .

5) Finally, the original location of Rowaggr is activated, and

the data contents of Rowrand are written into this location.

This causes a latent activation, as shown by 5 .

Memory
Controller

Read

Rowaggr

Bank

Memory
Controller

Rowaggr

Row Buffer

Read
Rowaggr Rowrand

Write
Rowaggr

Activate 
and 

Close

Memory
Controller

Rowrand

Write
Rowrand

Latent
Activation

1 3

2

4 5

5
Random

Aggressor 

Fig. 2. The latent activation on the aggressor row caused by a swap operation.
This is primarily due to the fact that it takes five steps to activate two different
rows (Rowaggr and Rowrand) and thereby exchange their data contents.

Thereafter, if any one of the pairs of swapped rows continues

to receive TS activations, RRS would first unswap both these

rows and then swap the aggressor row again to a new location.



All subsequent swaps for the aggressor row, within the

refresh window, would be accompanied by an unswap, and

together the unswap-swap operations cause up to two latent

activations at the aggressor’s original physical row. As shown

in Figure 3, the first latent activation comes during the unswap,

which copies back the swapped aggressor row to its original

location (as shown in 1 ). Then the swap of the aggressor row

with the new location (Rownext-rand) also causes an additional

activation to the aggressor’s original location (as shown in 2 ).

Both steps incur extra activations because the row movements

happen within the same bank, share a single row buffer, and

require row-close and row-activate after each movement.

Bank

Latent
Activation

 

Rowaggr

Rowrand

Unswap

1

 

Rowrand

Rowaggr

Swap

 Rowaggr

Rownext-rand

Latent
Activation

2

 

Rowaggr

Rownext-rand

Fig. 3. Latent activations on the aggressor row caused by an unswap followed
by a swap operation. These operations result in two additional activations.

Notably, if an attacker continuously activates the physical

address of Rowaggr, its latent activations increases. In such a

scenario, RRS issues mitigations that first cause one swap and

then ‘N ’ unswap-swap operations. Thus, the physical location

originally storing Rowaggr would have incurred up to 2N + 1
latent activations. This may be exploited by a new targeted

attack to increase the activations for a location by exploiting

latent activations from the mitigative operations.

2. Performance Implications from Swaps and Unswaps:

Unswap operations coupled with swaps are essential to ensure

low-performance costs. This is because if an aggressor row is

continuously swapped without first unswapping to its original

location, it creates a chain of swapped rows that can introduce

a large latency spike to unravel towards the end of a refresh

interval. Figure 4 shows that if RRS does not employ immediate

unswaps, it can cause an additional 3% - 7% slowdown on

average compared to a design with immediate unswaps.

Fig. 4. The normalized performance of RRS, with and without immediate
unswap operations, with respect to a baseline that does not mitigate against
Row Hammer (RH). On average, not employing immediate unswap operations
causes an additional slowdown of 3% to 7% at any given TRH .

Consider a scenario in which RowA is swapped with RowB .

If RowA is continuously activated, it would need to be swapped

again. Without the unswap, the new location containing RowA

is now directly swapped with RowC , and RowA is now in

place of RowC , while RowC is in place of RowB , and so on.

At the end of the refresh interval, all the swapped rows (RowA,

RowB , RowC , . . . ) need to be placed back into their original

locations. In practice, even one aggressor row can displace

1000s of random rows as it is swapped. Placing these random

rows back together at the end of an epoch can cause a system

to freeze up under hammering access patterns. Thus, designing

a practical row swap mitigation without unswaps is non-trivial.

In the next section, we demonstrate how the latent activations

of unswap-swaps can be exploited to break the defense and how

a secure defense might be designed without unswap-swaps.

III. JUGGERNAUT ATTACK PATTERN

A. Intuition and Overview

The default attack studied in RRS employs a random-

guess strategy, where the attacker continuously picks random

aggressor rows to activate and makes TS activations on it before

it gets swapped. Eventually, the attacker hopes to repeatedly

activate a single chip address by repeatedly guessing which

row currently maps to it. For an RH threshold (TRH ) of 4800

and TS of 800, the attacker would need to correctly guess

the mapping 4800
800 = 6 times – essentially the swap rate. This

attack pattern exploits the birthday paradox and takes years to

break RRS. Rather than using only the birthday paradox attack

pattern, we develop a more effective attack pattern, Juggernaut,

that uses both latent activations and random guesses.

Fig. 5. The high-level flow of the Juggernaut attack pattern. It consists of
two parts. The first part biases an aggressor row with latent activations. The
second part employs a random-guess attack.

Figure 5 shows the high-level flow of Juggernaut (with

latent activations and random guesses). Juggernaut uses latent

activations to bias activations to a single chip address and thus

reduces the adversarial effort for random guesses, as follows:

1) First, we use latent activations to bias any one aggressor row

towards a higher activation count. For instance, for a TRH

of 4800, if the aggressor row incurs 800 unswap-swaps (N ),

then its original chip location would have incurred 1601



(2N + 1) latent activations2 (as described in Section II-F).

Additionally, it would have incurred TS (800) activations

before its initial swap, and in total, 2401 activations.

2) Subsequently, a random-guess attack only needs to land

TS (800) activations 3 times on the aggressor row for it to

cross TRH (4800) activations. As 3 is much lower than the

swap rate (6), it enables us to break RRS quickly.

B. Analytical Model of Juggernaut Attack Pattern

We model our Juggernaut attack pattern statistically to

better understand its impact. Table II shows the parameters

used in its analysis. We also assume a memory controller with

a closed-page policy similar to prior work [32].

TABLE II
KEY PARAMETERS USED IN THE ANALYTICAL MODEL

Parameter Definition

N Number of rounds of repeated unswap-swaps
L Latent activations per round (up to 2)
G Number of Random Guess
R Number of Rows per Bank

tRC Row Cycle Time
treswap Unswap-swap Latency = Reswap latency in RRS
tswap Swap Latency

Goal: For a successful RH attack, any aggressor row

(Rowaggr) should incur ≥ TRH activations (ACTs).

1. Biasing an Aggressor Row with Latent Activations

We consider N attack rounds. Each round increases the latent

activations of Rowaggr by L – as shown in footnote 2, L is 1.5.

Furthermore, if the attack is timed precisely, an attacker can

target a row 2× TS − 1 times before encountering an initial

mitigative action (i.e., swap operation) that causes one latent

activation. This exploits the fact that the refresh operations

may not be synchronized with the reset of trackers [43, 45].

Equation 1 shows the number of activations in the aggressor

row (ACTaggr) after 2× TS initial activations, composed of

2× TS − 1 direct activations and one latent activation, and N

rounds of latent activations (L).

ACTaggr = 2× TS + (L×N) (1)

Equation 2 shows the additional activations required for

Rowaggr to cause a bit flip (ACTleft) after N rounds.

ACTleft = TRH −ACTaggr (2)

2. Employing the Random-Guess Attack

To further activate Rowaggr, as the attacker does not know its

original location, they can repeatedly choose a random row

(Rowrand) and activate it TS times. Some of these choices

could land on the original location of Rowaggr. The number of

swaps (k) needed for this attack is denoted with Equation 3.

k = &
ACTleft

TS

' (3)

2Although a naive unswap-swap operation causes two latent activations, it
is possible to optimize the unswap-swap using swap buffers in RRS (to be
described in Section IV). In this case, depending on which row is selected
first, a row gets either one or two additional latent activations. Thus, in this
paper, we take an average of 1.5 latent activations per attack round.

tRC (45ns) is the minimum delay between activations. Let

us assume a 64ms refresh interval (epoch). A DRAM bank

performs 8192 refresh operations during an epoch, and each

operation takes tRFC (350ns). Thus, only the remaining time

the attacker can use (tactual) is described by Equation 4.

tactual = 64ms− tRFC × 8192 (4)

In addition, the attacker has N attack rounds (taggr) to bias

the target aggressor row towards a higher activation count. As

each attack round incurs TS activations to force an unswap-

swap operation, with each unswap-swap operation incurring

treswap (5.4µs) latency3, taggr can be expressed by Equation 5.

taggr = ((TS − 1)× tRC + treswap)×N (5)

The time the attacker spends to cause an initial swap should

also be considered. As the attacker could generate 2× TS − 1
activations until to cause an initial swap with tswap (2.7µs)

latency, the total time left (tleft) for employing the Random-

Guess attack is denoted by Equation 6.

tleft = tactual − taggr − (tRC × (2× TS − 1) + tswap) (6)

The total number of possible random guesses (G) within a

refresh interval (epoch) is calculated using Equation 7. Each

randomly chosen row (Rowrand) is activated TS times. These

rows only incur the initial swap (tswap) latency. This is because

most of these rows are picked only once.

G =
tleft

tRC × (TS − 1) + tswap

(7)

Assuming a bank with R (128K) rows, a row has a

probability of p = 1
R

of being selected. Thus, the probability

(pk,TS
) of a row having been selected k times within G random

guesses is described by Equation 8.

pk,TS
= GCk × pk × (1− p)(G−k) (8)

Since we only have a single target row, the expected number

of iterations (ATiter) and the time (ATtime) for a successful

attack are represented by using Equation 9 and Equation 10.

ATiter =
1

pk,TS

(9)

ATtime = 64ms×ATiter (10)

C. Juggernaut: Determining the Attack Rounds

Figure 6 shows the time-to-break RRS with Juggernaut for

different RH thresholds (TRH ) and varying rounds of attack. We

also perform event-driven Monte Carlo simulations to validate

our analytical model [40, 47]. As shown in Figure 6, the results

with 100,000 iterations of our Monte Carlo simulations closely

match the values from our analytical model.

For a TRH of 4800, even after using a TS of 800 (swap rate

of 6), Juggernaut takes only 4 hours to break RRS. In contrast,

the naive attack pattern using only the birthday-paradox attack

(used in RRS) takes >3 years to cause RH with TS of 800.

3Note that, the Row Indirection Table (RIT) in RRS [51] evicts entries of the
previous epoch before the swap or unswap-swap operations (to be described
in Section IV). To enable this, the attacker can fill RIT after the first refresh
interval (epoch).



Fig. 6. Time-to-break RRS [51] with Juggernaut with varying attack rounds -
both analytical and experimental results are shown. This analysis uses a swap
rate of 6 for RRS. Juggernaut can break RRS in under 4 hours.

It is noteworthy to observe periodic ‘steep cliffs’ in the time-

to-break. This is because, as shown in Equation 3, the value

of k (new swap rate) is an integer. Thus, gradually varying the

attack rounds can change the value of k from one integer value

to another – which is manifested as a cliff in the time-to-break.

Figure 7 shows how the number of guesses required to break

RRS (k) varies with attack rounds. As we increase the attack

rounds, the attacker only needs fewer guesses. At a TRH of

4800, if the attacker uses ≤ 500 attack rounds, they would

need to land at the original location of the aggressor row at

least 4 times. In contrast, if we increase the attack rounds

(say ≥ 1100), the attacker needs to guess the original location

only twice. Also, within the same required number of correct

random guesses (k), we see that the time-to-break increases

as the attack rounds increase, as shown in Figure 6. This is

because a larger number of attack rounds decreases the number

of guesses (G) in Equation 7.

Fig. 7. The number of correct guesses required as the attack rounds vary. As
the attack rounds increase, the attacker needs fewer guesses.

Hence, we pick the number of attack rounds (N ) such that

it minimizes the value of k, while also maximizing the number

of guesses (G). For instance, at a TRH of 4800, selecting N

as 1100 shows the best attack performance – breaking RRS in

under 4 hours. It is noteworthy to mention that, as shown in

Figure 7, Juggernaut can break RRS in just 1 refresh period

(64ms) using only the latent activations (unswap-swaps) at

lower TRH values (e.g., 2400 and 1200). To make matters

worse, the TRH value is highly likely to drop further due to

the DRAM technology scaling – TRH has already dropped by

29× from 2014 to 2022. Thus, it is vital to develop a low-cost

protection technique not only against the Juggernaut attack but

also other unknown attack patterns.

We also analyze a multiple-bank attack, where the attacker

targets multiple banks instead of a single bank. However, such

an approach considerably reduces the attack effectiveness. This

is because it significantly decreases the number of possible

activations in one refresh interval due to bank-to-bank activation

delays and row migration latencies [51]. For instance, at a TRH

of 4800 with a swap rate of 6, targeting all (16) banks in a

channel increases the attack time from 4 hours to 9.9 years.

Thus, we only focus on a single bank attack.

IV. MITIGATING JUGGERNAUT WITH SECURE ROW-SWAP

A. Overview and Intuition

Secure Row-Swap (SRS) leverages the observation that latent

row activations are due to the subsequent unswap and swap

(unswap-swap) operations. As latent activations are key to

the success of Juggernaut, SRS prevents latent activations by

avoiding unswap-swap operations.

SRS observes that unswap-swap operations create pairs of

tuples of row mappings. This implies that if RowA maps to

RowX , then RowX also maps to RowA. The pairs of tuples

of mappings enable RRS to immediately unswap these rows.

Unlike RRS, SRS manages row mappings such that it can

only employ the swap operation. For instance, in SRS, if

RowA is repeatedly activated TS times, it will perform a swap

operation by choosing a random row (say RowZ), thereby

destroying the original tuple pair. SRS is designed to lazily

unswap rows (across epochs) into their original locations by

using a small per-bank place-back buffer. The lazy unswap

operations help mitigate performance overheads.

B. Row Indirection Table

The Row Indirection Table (RIT) tracks row remappings in

RRS. SRS also uses a modified RIT. RIT is constructed as a

Collision Avoidance Table (CAT) [50]. The total number of

entries in RIT (RITentries) depends on TS and the maximum

number of activations (ACTmax) in a refresh interval (epoch).

Additionally, the CAT structure is over-provisioned to prevent

collision-based attacks [50, 51]. Furthermore, RRS stores RIT

entries as tuples to enable efficient unswap-swap operations.

For instance, if RowA and RowB are swapped, the RIT will

have the tuples < A,B > and < B,A >. If either RowA or

RowB gets additional TS activations, both rows are unswapped

and swapped. Assuming RowA is swapped with RowC and

RowB is swapped with RowD, then the RIT will now have

the tuples < A,C >, < C,A >, < B,D >, and < D,B >.

A lock bit is set for both tuple entries when they are brought

into RIT. The lock bits are reset at the end of the epoch. RIT

randomly evicts tuples from the previous epoch to insert new

tuples. RIT uses lock bits to identify if the tuples are indeed

from the previous epoch.



Fig. 8. An overview of the place-back operation and place-back buffer for enabling Secure Row-Swap (SRS). SRS does not require tuples of row addresses in
RIT. The place-back buffer helps lazily store the rows that are displaced from the original location.

C. SRS: Swap-Only Row Indirection

SRS splits the RIT into two equal parts, namely, the real part

and the mirrored part. Cumulatively, they have the same size

as the RIT from RRS and retain the properties of CAT. The

original mappings are stored in the real part, and the reverse

mappings are stored in the mirrored part of the RIT.

1. Initial Swap: Let us assume that RowA swaps with RowB .

The original RIT now contains the tuples < A,B > and

< B,A >. The mirrored RIT contains the tuples < B,A >

(for < A,B >) and < A,B > (for < B,A >).

2. Subsequent Swaps: Thereafter, if RowA receives TS

activations again, then RowA is simply swapped again – without

unswapping. Let us assume RowA now swaps with RowC .

The < A,B > entry in the original RIT is now updated to

< A,C >. Additionally, as RowC is now placed in the original

location of RowB , a new < C,B > is also added. However,

the original RIT still maintains the valid entry < B,A >.

The mirrored RIT is also updated with the reverse mappings

of the entries in real RIT. Therefore, the mirrored RIT now

contains < C,A >, < A,B >, and < B,C >. Figure 9 shows

these row mappings. A key difference between SRS and RRS

is that the RIT tuples in SRS do not have fixed pairs. As there

are no unswap operations, there is no latent row activation on

the original location of the swapped rows.

Fig. 9. The RIT (real and mirrored) provides indirections to the rows involved
in the swap operations in SRS. The tuples in SRS do not have fixed pairs.

D. SRS: Lazy Evictions and the Place-Back Buffer

SRS employs lazy evictions of RIT entries from the previous

epoch. These lazy evictions occur periodically in the current

epoch. This design serves two purposes. First, the lazy evictions

create space in the RIT for new entries for the next epoch.

Second, due to their lazy nature, these evictions mitigate latency

spikes as they are spread across the entire epoch.

SRS uses a per-bank ‘place-back’ buffer that holds the

contents of the rows that are being evicted. Consider a scenario

where RIT is performing lazy evictions for the entries of

the previous epoch. If the RIT has 1700 valid entries from

the previous epoch, each valid entry will be lazily evicted

periodically at the rate of EpochTime

1700 (i.e., 64ms
1700 ). Note that,

similar to RRS, the RIT is designed as a CAT. Thus, it can never

be fully occupied and is resilient to conflict-based attacks.

As shown in Figure 8, let us assume that the RIT contains

mappings for RowA, RowB , and RowC . If RowA is lazily

evicted from the RIT, as shown by 1 , it will be first moved

into the swap-buffers (already present in the original design of

RRS [51]), as shown by 1.1. Then, RowB is copied into the

place-back buffer. This is shown by 1.2. RowA then moved

to its original location, as shown by 1.3. As the last step for

the first place-back operation, the RIT invalidates the entries

for RowA and updates the physical location of RowB in the

real part as the place-back buffer This is shown by 1.4.

The next place-back operation moves RowB into its original

location, as shown by 2 . Similar to the first place-back

operation, as shown by 2.1, it first moves the row (RowC ) in its

original location into the swap buffer. The RIT invalidates the

entries for RowC , as shown by 2.2. Now, RowB is moved into

its original location, as shown by 2.3. The RIT invalidates the

entry for RowB , as shown by 2.4. Finally, RowC is migrated to

its original location, and the lazy eviction process is completed.

This is shown by 2.5.

E. Security Analysis

We quantitatively analyze the security of SRS against the

Juggernaut attack pattern.

Goal: For a system with Secure Row-Swap (SRS), create a

successful RH attack by causing any specific aggressor row

(Rowaggr) to incur ≥ TRH activations (ACTs).

As illustrated in Section III, Juggernaut is composed of two

parts. First, the attacker would attempt to bias any one aggressor

row towards higher activation counts during N attack rounds.

However, since SRS employs the swap-only row indirection,



there are no additional latent activations on the original location

of the aggressor row in each round. Thus, the original location

incurs only 1 latent activation (ACT) during the initial swap

operation of the aggressor row (Rowaggr). This is denoted by

Equation 11.

ACTaggr = 2× TS (11)

Since Rowaggr already has received ACTaggr activations,

the additional activations needed to cause this row to incur

Row Hammer (ACTleft) are represented in Equation 12.

ACTleft = TRH −ACTaggr (12)

Thereafter, the attacker uses the random-guess attack to pick

random rows and activate them TS times. We explained this

process in detail in Section III-B. The time for a successful

attack can be obtained by plugging Equation 12 into Equation 3.

Fig. 10. Time-to-break SRS using the Juggernaut attack pattern. For TRH

of 4800, even with a swap rate of 6, SRS has a time-to-break of > 2 years
while under continuous attack. In contrast, RRS can be broken in 4 hours.

Figure 10 shows the time-to-break SRS and RRS using

Juggernaut as we increase the swap rate and vary TRH values.

For a TRH of 4800, even with a swap rate of 6, SRS provides

robust security for >2 years against the Juggernaut attack

pattern. SRS is more robust at higher swap rates. Unfortunately,

even at increased swap rates, RRS is highly vulnerable to the

Juggernaut attack pattern.

F. Future-Proofing Security by Tracking Swap Counts

To protect against any unknown future attack patterns, we

future-proof SRS by adding a per-row swap-tracking counter.

We reserve a small portion of the main memory to store these

counters. Additionally, we also add a 19-bit on-chip register

in the memory controller to count epochs. Similar to prior

work, a refresh interval is divided into two epochs [44, 45].

Each counter is composed of two parts. The first part stores

an epoch-id. The second part stores the cumulative activation

count when a swap occurs – including any latent activations.

Figure 11 shows this design. Let us assume that a counter

with 19 bits of epoch-id and 13 bits of activation count.

Therefore, it can count up to 8192 activations per row (including

latent activations) per epoch. The respective counter for a

row is read before a swap operation. If the on-chip epoch

register is different from the 19-bit epoch-id, then it indicates a

different epoch window. In this case, the activation counts for

that row are reset. However, if the epoch-id and the on-chip

Fig. 11. A memory system with per-row swap-tracking counter. The memory
controller stores an epoch register. The main memory reserves 0.05% of its
space to store a per-row tracking counter. The respective counter for a row is
read and updated before each swap operation.

epoch register have the same value, then activation counts are

updated with TS activations along with any additional latent

activation count. Once the on-chip epoch register shows all ‘1s’,

it immediately resets all the counters. This involves reading

64 counter rows every 219 epochs (each epoch is 32ms) –

incurring a latency of 41µs every 4.6 hours.

In terms of storage, we need only one 32-bit counter per

DRAM row. Assuming we have 128K rows per bank, we would

need to provision 512KB of space per bank. This represents

0.05% of the total DRAM capacity. These 512KB of counters

are stored across sixty-four 8KB DRAM rows accessed only

during swap operations. To prevent any recursive look-ups,

the counter-rows are tracked using dedicated per-bank on-chip

activation counters (similar to prior work [45]).

G. SRS: Performance and Scalability

Figure 12 compares the performance of SRS with RRS.

SRS shows a similar slowdown as RRS. This is because,

while SRS prevents the Juggernaut attack, it still incurs the

same memory bandwidth overheads as RRS. The memory

bandwidth overheads are dictated by the swap rate. As the

swap rate of SRS and RRS are the same, they do not scale well

towards lower values of TRH . SRS and RRS show a variation

in performance occurs due to the sub-optimal schedules of the

lazy eviction mechanism and place-back operations.

Fig. 12. The normalized performance of SRS and RRS compared to an not-
secure baseline. Overall, SRS and RRS show similar slowdowns across different
values of TRH . The variation in performance occurs due to the sub-optimal
schedules of the lazy eviction mechanism and place-back operations.



V. SCALABLE AND SECURE ROW-SWAP

A. Overview and Intuition

Scalable and Secure Row-Swap (Scale-SRS) aims to reduce

the swap rate and mitigate the memory bandwidth overheads

from swaps while providing years of security. To this end,

Scale-SRS uses the observation that, even during an attack,

the original locations of only a few aggressor rows receive

multiple swaps. RRS and SRS increase the swap rate of the

entire memory system only to take care of these outlier rows.

Instead of designing for the worse-case outlier rows, Scale-SRS

designs for the common case. To this end, Scale-SRS detects

the outlier rows and stores them in the Last Level Cache (LLC).

Fortunately, even during an attack, there tend to be only a few

outlier rows every few hours or days. Thus, the LLC observes

a minor capacity loss only for one refresh interval that occurs

every few hours or days (in the worst case).

B. Improving Scalability by Reducing Swap Rates

Even during an attack, there are only a few such locations that

stand out as outliers. This is because, within a refresh window,

there are only a finite number of activations (ACTmax = 1.36

million) are possible. Assuming a TS = 1200, the attacker can

only activate up to 1134 (ACTmax

TS
) rows TS times. Furthermore,

if a TRH is 4800, then the attacker would need to land on the

original location of any one of these rows 3 times.

Fortunately, the memory bank tends to have several rows

– say between 64K-128K rows. Even during an attack, only

a small fraction of these rows (1134 rows) are swapped, and

they have 64K-128K locations they could be swapped into.

Thus, in most refresh intervals, the original location of any

attacked rows would not have been chosen more than 3 times.

The intervals wherein the row is chosen more than 3 times are

outliers. These occur only every few hours or days. Figure 13

shows the time to appear for these outlier rows with varying

swap rates. For this analysis, we assumed a TRH of 4800.

Fig. 13. The time-to-appear (in days) for outlier rows with varying swap
rates for TRH of 4800. Even at a lower swap rate of 3, it takes at least 64

years for 4 outlier rows with >3 swaps to simultaneously appear within a
bank. Additionally, only one 64ms refresh window every 31 days showcases
3 outlier rows – thus, these outliers are very rare.

Without loss of generality, this paper chooses a swap rate

of 3. We observe that three rows (as shown in Figure 13) are

chosen only three times in a 31-day window4. We use the

per-row swap-tracking counters to identify such events. If any

per-row swap-tracking counter value is ≥ 3× TS , we classify

its respective row as an outlier and pin it within the LLC.

C. Provisioning Space in the Last Level Cache

Assuming a TRH of 4800, the LLC needs to be equipped

to store a maximum of 3 DRAM rows in a single bank attack

(occurring once every 31 days). As each row is 8KB and an

adversary targets a single bank per channel (to maximize attack

bandwidth), we may need up to 3×8×1×2 = 48KB of space

in the LLC. This accounts for only 0.05% of 8MB LLC.

We also analyze the multiple bank attack, as it might increase

the capacity overhead in LLC. Assuming years of continuous

attack, up to 3 outlier rows can appear in 11 banks per channel,

which requires LLC to store 66 DRAM rows. For an 8MB

LLC, this translates to a 6.5% lower capacity. However, as

the multiple bank attack degrades the attack efficiency (as

explained in Section III-C), this scenario now occurs only

once every 2.6 years and only lasts for one refresh interval

(64ms). Thus, on average, pinning rows in LLC has a negligible

impact on performance.

As the LLC employs its own address mappings into its

sets, it cannot simply pin DRAM rows. It could be likely

that these rows could map the same set and thereby conflict

with each other. To prevent this, Scale-SRS employs a small

buffer, called pin-buffer, in front of the LLC to indicate the

pinned physical addresses and redirect them into their new set

locations. For instance, we would need a 66-entry buffer that

stores the addresses of 66 DRAM rows. For an 8KB row, each

entry would be 35 bits long (48-bit physical address - 13-bits).

Each pin-buffer entry points to a fixed set. For instance, the

first entry would point to set 0. Assuming 64 Byte cache lines

and an 8-way cache, we would need 16 contiguous sets to

store this row. Thus, the second entry would now point to set

16, and so on. All accesses into the LLC flow through the

pin-buffer, preventing any new cacheline from evicting these

entries. These entries are cleared, and their respective rows are

evicted once the refresh interval ends. In most 64ms refresh

intervals, the pin-buffer does not contain any rows.

VI. EVALUATION METHODOLOGY

Simulation Framework: We use a detailed memory system

simulator USIMM [2, 9], which is modified to enforce the

DDR4 protocol. The Misra-Gries tracker and the RIT are

modeled as a Collision Avoidance Table (CAT) structure [51]

within the memory controller. We report the performance and

other related metrics from the USIMM memory model.

Table III shows the baseline system configuration. We use a

DRAM configuration with 16 banks per rank and 1 rank per

channel (similar to the prior work [51]) and 2 channels. Each

bank has 128K rows of 8KB each and 1.36 million activations

4The expected number of rows with ‘k’ swaps for a DRAM bank that has
‘R’ rows (RK ) is R × pk,TS

. The probability of having ‘M’ rows with ‘k’

swaps (pM,k) can be calculated with the Poisson distribution as
e−RK×RM

K

M !



Fig. 14. The normalized performance of Scalable and Secure Row Swap (Scale-SRS) and Randomized Row Swap (RRS) compared to a not-secure baseline at
TRH of 1200. Scale-SRS and RRS incur an average slowdown of only 0.7% and 4% respectively, with several benchmarks in RRS incurring >10% slowdown.

possible per bank in the 64ms refresh interval. To emphasize

the scalability of Scale-SRS, we evaluate against a TRH of

1200 activations. We also perform sensitivity studies for TRH

values of 512, 2400, and 4800 activations.

TABLE III
BASELINE SYSTEM CONFIGURATION

Cores (OoO) 8
Processor clock speed 3.2GHz

ROB size 192
Fetch and Retire width 4

Last Level Cache (Shared) 8MB, 16-Way, 64B lines

Memory size 32 GB – DDR4
Memory bus speed 1.6 GHz (3.2GHz DDR)
TRCD-TRP -TCAS 14-14-14 ns

TRC , TRFC , TREFI 45ns, 350 ns, 7.8µs
Banks x Ranks x Channels 16 x 1 x 2

Rows per bank 128K
Size of row 8KB

Workloads: We evaluate Scale-SRS across SPEC2006 [12],

SPEC2017 [57], GAP [48], BIOBENCH [3], PARSEC [5], and

COMMERCIAL [9] benchmarks. We use Intel Pintool [31]

to extract the SPEC2006, SPEC2017, and GAP benchmarks

for representative regions. The COMMERCIAL, BIOBENCH,

and PARSEC benchmark traces are obtained from the USIMM

distribution. We executed each benchmark for 1 Billion instruc-

tions per core. We also create 6 mixed workloads by randomly

combining benchmarks. We execute the workloads in rate mode

and continue simulating the individual benchmarks until all

cores complete 1 billion instructions each. For conciseness,

we show detailed results only for workloads that encounter at

least one row with 800+ activations within a 64ms time refresh

window and report averages for all 78 workloads.

VII. RESULTS AND ANALYSIS

A. Performance

Figure 14 shows the normalized performance of Scale-SRS

and RRS with respect to a baseline that does not employ RH

mitigation. To emphasize the scalability of Scale-SRS, we use

an aggressively low TRH of 1200. Workloads such as hmmer,

bzip2, gcc, zeusmp, astar, sphinx, and xz_17 have

greater than 10% slowdown while employing RRS. In the

worst case, gcc has a 26.5% slowdown due to frequent swaps

in RRS. On average, across 78 workloads, Scale-SRS has a

slowdown of only 0.7%, whereas RRS has a slowdown of 4%.

B. Sensitivity to Varying RH Thresholds

Figure 15 shows the performance sensitivity of Scale-SRS

and RRS as TRH varies from 4800 to 512. Even when TRH

drops, Scale-SRS minimizes its performance overhead since it

employs a relatively lower swap rate. On the contrary, RRS

incurs higher performance overhead as RRS caters to the

outlier rows, which makes it swaps (and unswaps) rows at

a relatively higher rate. Even at a TRH of 512, Scale-SRS

shows an average slowdown of only 4%, whereas RRS shows

an average slowdown of 14%.

Fig. 15. The normalized performance of SRS and RRS as the value of TRH

varies from 4800 to 512. Even at a TRH of 512, Scale-SRS shows an average
slowdown of only 4%, whereas RRS shows an average slowdown of 14%.

C. Impact of Aggressor Row Tracker

Figure 16 shows the performance sensitivity of Scale-SRS

and RRS if they use the Hydra tracker instead of the Misra-

Gries Tracker. We vary TRH from 4800 to 512. Even at a TRH

of 512, Scale-SRS with Hydra has an average slowdown of only

5.9%, whereas RRS has an average slowdown of 26.8%. Hydra

stores its activation counters in the memory. Thus, despite using

a counter cache, RRS with Hydra tends to access the memory

frequently at lower TRH values.



Fig. 16. The normalized performance of Scale-SRS and RRS while using the
Hydra tracker. Even at a TRH of 512, Scale-SRS with Hydra has an average
slowdown of only 5.9%, whereas RRS has an average slowdown of 26.8%.

D. Storage Analysis

Table IV shows the required SRAM-based on-chip storage

for RRS and compares that to Scale-SRS. A key difference

between RRS and Scale-SRS is the reduced swap rate of 3.

This enables Scale-SRS to reduce the size of the RIT.

Scale-SRS requires one additional 8KB place-back buffer

per bank. Additionally, it also uses a 19-bit epoch register

and a pin-buffer. The size of the pin-buffer depends on the

number of outlier rows – which is determined by TRH . The

LLC overhead from pinning rows occurs only once every

few thousand 64ms refresh intervals. Thus, it has a negligible

impact on performance and is not shown in Table IV. Overall,

Scale-SRS has about 3.3× less storage overhead compared to

RRS at a TRH of 1200.

TABLE IV
STORAGE OVERHEAD PER BANK

Structure
TRH = 4800 TRH = 2400 TRH = 1200

RRS Scale-SRS RRS Scale-SRS RRS Scale-SRS

RIT 35 KB 9.4KB 130KB 35KB 250KB 67.5KB

Swap-Buffer 1 KB 1 KB 1KB 1KB 1KB 1KB

Place-Back
- 8KB - 8KB - 8KB

Buffer

Epoch
- 19 bits - 19 bits - 19 bits

Register

Pin Buffer - 289 bytes - 420 bytes - 420 bytes

Total 36 KB 18.7KB 131KB 44.4KB 251KB 76.9KB

E. Power Analysis

Scale-SRS incurs power overheads from extra operations

such as row swaps and accesses to on-chip structures. Ta-

ble V shows the power consumed by DRAM (obtained

from USIMM [9]) and the SRAM structures (obtained using

Cactii [33] in the 32 nm technology) in Scale-SRS and RRS.

Compared to RRS, due to smaller-sized SRAM structures,

Scale-SRS incurs 23% lower on-chip power. Scale-SRS also

reduces the DRAM power as it reduces the effective swap rate.

TABLE V
EXTRA POWER CONSUMPTION PER CHANNEL (TRH = 4800)

Type of Power Overhead RRS
Scale
SRS

DRAM Power Overhead (Row-Swap) 0.5% 0.2%

SRAM Power Overhead 903 mW 703 mW

VIII. DISCUSSION

1. Internal Chip Address versus Physical Address:

We have demonstrated Scale-SRS and RRS using physical

addresses supplied by the OS. However, it is possible that the

chip rows are larger. In such scenarios, the memory controller

can use the chip row addresses for the RIT and swap these

rows. While this requires knowledge of the internals of DRAM,

this does not change our technique or the security analysis.

2. Implementing Scale-SRS Near-Memory or In-Memory:

While we have demonstrated Scale-SRS on the CPU-based

memory controller, it does not prevent us from implementing

this as near-memory or in-memory (within DRAM chips [8,

37]). This can help new interfaces such as CXL [13].

3. Juggernaut Attack with Open-Page Policy:

Using an open-page policy [19] for the memory controller

could reduce the attack potency of Juggernaut. This is because

keeping the page open can reduce the number of row activations

and thereby decrease the maximum number of possible attack

rounds. For instance, using open page policy at a TRH of 4800

and a swap rate of 6, the time-to-break RRS using Juggernaut

increases from 4 hours to 10 days. However, the advantages of

using open page policy disappear as TRH decreases. At lower

TRH values, Juggernaut is powerful regardless of page policies.

For example, if TRH ≤ 3300, Juggernaut can break RRS in

under 1 day, even with the swap rate of 10. Thus, developing a

new protection method against Juggernaut, such as our Scale-

SRS, is essential to enable the adoption of randomized-based

defense in the future DRAM generations (with lower TRH ).

4. Possible Storage Overhead Reduction of Scale-SRS:

Although Scale-SRS has much less SRAM-based storage

overhead than RRS, there is still room for storage overhead

reduction. One way is to add a bit to every RIT entry to

distinguish between the original and the reverse mapping. This

would prevent the need for a mirrored part of the RIT and can

reduce its storage overhead by almost 2×.

5. Juggernaut and Scale-SRS in Future DRAM Genera-

tions:

The TRH value will highly likely drop further in future

DRAM generations, making them more vulnerable to RH-

based attacks such as Juggernaut and half-double. Thus,

future DRAM generations would involve more features to

mitigate Row Hammer. For instance, recently introduced DDR5

devices perform refresh operations 2× more frequently than

DDR4 [35, 36]. However, even in DDR5 devices, Juggernaut

can break RRS in under 1 day regardless of the swap rate if

TRH ≤ 3100. This demonstrates the potency of the Juggernaut

attack even for future DRAM generations. This also highlights



the necessity of new protection methods such as Scale-SRS.

Furthermore, Scale-SRS has better scalability (i.e., better

performance and less storage overhead) than RRS at lower

TRH values. This enables Scale-SRS to be commercially viable

as a defense line against RH attacks (known and unknown) for

present and future DRAM generations.

IX. RELATED WORK

A. Aggressor-Focused Mitigation

We have already described and analyzed the most closely re-

lated state-of-the-art aggressor-focused mitigation, Randomized

Row-Swap (RRS), in Section II-F. Besides RRS, BlockHammer

(BH) [59] is another aggressor-focused mitigation. BH exploits

dual counting bloom filters to track potential aggressor rows and

uses a throttling-based approach for such rows. Unfortunately,

BH is vulnerable to denial-of-service (DoS) attacks. For

instance, at a TRH of 4800, memory requests would be delayed

by approximately 20µs per activation. BH also requires complex

memory scheduling policies. In comparison to BH, Scale-SRS

is more efficient and has no DoS concerns. A recent work,

AQUA [53], improves the performance and storage overhead

of RRS by exploiting isolation instead of randomization.

Specifically, AQUA reserves a dedicated region of DRAM

as the quarantine region and migrates the aggressor rows into

the quarantine region when the migration threshold is reached.

As compared to AQUA, Scale-SRS does not need a dedicated

quarantine region and relies on randomized row movement.

B. Victim-Focused Mitigation

Victim-focused mitigation (VFM) prevents RH by perform-

ing targeted refreshes on victim rows. This can be done either

probabilistically (PRA [20], PARA [24], PRoHIT [56], MR-

LoC [60], HammerFilter [22]) or by tracking accesses to partic-

ular rows (CRA [20], CBT [55], TWiCe [28], Graphene [44],

Hydra [45]). While it is effective to prevent classic RH

attacks that target victims that are immediate neighbors, they

are susceptible to attack patterns, such as the half-double

attack [16, 25], that target distant neighbors. One way that

VFM may adapt to defend against half-double is to account

for neighbor refreshes in the activation counts of the tracker.

However, this requires VFM to know the proprietary internal

DRAM row mappings and accurate theoretical modeling of

the half-double and blast-radius effects. To the best of our

knowledge, these effects are not yet fully known.

Mithril [23] and ProTRR [32] suggest using the newly

introduced Refresh Management (RFM)-based RH mitigations.

These solutions are implemented inside DRAM chips and

coordinate with the memory controller using the RFM interface.

This approach solves the limitations of prior VFM methods

(such as requiring proprietary internal DRAM row mappings

or an additional interface to communicate with the memory

controller). ProTRR also shows how to prevent the half-double

attack. However, as TRH becomes lower and blast-radius

increases due to DRAM technology scaling, implementing

these methods inside DRAM chips tends to become infeasible

due to their high storage overhead.

C. ECC-Based Defenses

ECC memories can correct a small number of bit-flips [10,

39, 41, 42, 46]. Such an approach can be used to correct

the bit-flips from RH. However, ECCploit [11] shows that an

attacker can still cause RH by overcoming ECC protection.

Synergy [49] and SafeGuard [14] provide integrity protection

and can detect RH without recovering corrupted data.

D. Software-Based Defenses

Software-based defenses often require information about

DRAM properties that may be proprietary or not readily

accessible to software [4, 6, 26, 58]. Additionally, these

solutions often incur severe performance overheads, demand

intrusive modifications to system software, and only tend to

be effective for certain types of attacks.

For example, ANVIL [4] employs CPU performance counters

to identify RH attacks and perform refreshes to the immediate

victim rows. GuardION [58] prevents RH attacks by putting

a guard row between data of different security domains. In

ZemRAM [26] and RIP-RH [6], isolation is provided by

locating the kernel space and user space(s) in isolated parts

of DRAM. Unfortunately, these solutions require proprietary

internal DRAM mappings information. Other solutions, such

as CATT [7], which carries out profiling of cells and blacklists

pages that contain vulnerable cells to RH, can cause significant

loss of memory capacity at lower TRH .

X. CONCLUSION

As DRAM-based systems are becoming increasingly sus-

ceptible to Row Hammer (RH) attacks, a recent work called

Randomized Row-Swap (RRS) proposed proactively swapping

aggressor rows to break spatial correlations with victim rows.

Our paper shows that RRS neither secure nor scalable. We

propose Juggernaut that breaks RRS in under 1 day regardless

of the swap rate. Juggernaut uses latent activations in RRS to

make a row vulnerable to RH. To overcome this, we propose

the Scalable and Secure Row-Swap (Scale-SRS). Scale-SRS

avoids latent activations and prevents Juggernaut. It also enables

scalable RH mitigation by allowing the use of a much lower

swap rate than RRS. Overall, even at an RH threshold of 1200,

Scale-SRS has a 0.7% slowdown while requiring 3.3× less

on-chip storage compared to RRS, which has a 4% slowdown.
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APPENDIX

A. Abstract

This artifact covers two aspects of the results from the

paper: (1) Security analysis of our Juggernaut attack against

Randomized Row-Swap (RRS) and (2) Performance analysis

of our Scalable and Secure Row-Swap (Scale-SRS) and RRS.

For the security analysis, a Bins and Buckets model of the

Juggernaut attack is provided as a C++ program. Our program

is based on event-driven Monte Carlo simulations for faster

simulations. We provide scripts to compile our simulators and

to recreate the results shown in Figure 6.

For the performance analysis, we provide the C code for the

implementation of Scale-SRS and RRS, which is encapsulated

within the USIMM [9] memory system simulator. The Scale-

SRS and RRS structures and operations are implemented within

the memory controller module in our artifact. We provide scripts

to compile our simulator and run the baseline, Scale-SRS, and

RRS for all the workloads and plot the results in Figure 14.

B. Artifact Check-List

1) Security Evaluations:

• Algorithm: Implementation of event-driven Monte Carlo
Simulations of the Juggernaut attack in C++.

• Compilation: Tested with g++ (versions 9.4.0, 11.3.0), but
should compile with most standard compilers.

• Run-time environment: Tested on Ubuntu 20.04 and 22.04,
but should broadly run on any Linux distribution.

• Hardware: Running all simulations with 100,000 iterations for
Row Hammer thresholds of 4800, 2400, and 1200 requires a
single-core CPU.

• Metrics: Attack Time (seconds and days).
• Output: Results shown in Figure 6.
• Experiments: Instructions to run the experiments and parse

the results are available in the README file.
• How much time is needed to complete experiments (approx-

imately)?: 3 minutes with a single-core Intel Xeon CPU.
• Publicly available?: Yes.
• Archived (provide DOI)?: https://doi.org/10.5281/

zenodo.7445036

2) Performance Evaluations:

• Algorithm: Implementation of Scale-SRS and RRS structures
and operations in C.

• Program: The artifact assumes memory-access traces are
available (filtered through an L1 and L2 cache model) for all of
the benchmarks. This can be generated with any tracing tool (like
Intel Pin [31] v2.12). We tested the artifact with benchmarks
from SPEC-2006, SPEC-2017, PARSEC, BIOBENCH, and GAP
suites.

• Compilation: Tested with gcc (version 11.3.0), but should
compile with most standard compilers.

• Run-time environment: Tested on Ubuntu 22.04, but should
broadly run on any Linux distribution.

• Hardware: Running all 78 benchmarks in parallel (78 simulta-
neous instances of the simulator) requires a CPU with a sufficient
number of cores (64+) and memory (128GB+).

• Metrics: Normalized Performance (IPC).
• Output: Performance results shown in Figure 14.
• Experiments: Instructions to run the experiments and parse

the results are available in the README file.
• How much time is needed to complete experiments (approx-

imately)?: 15 hours on Intel Xeon CPU if all 78 benchmarks

are run in parallel (7-8 hours for baseline and RRS each on our
system).

• Publicly available?: Yes.
• Archived (provide DOI)?: https://doi.org/10.5281/

zenodo.7445036

C. Access to the Artifact

The code is available at https://github.com/STAR-

Laboratory/scale-srs

D. System Requirements and Dependencies

1) Requirements for Security Evaluations:

• Software Dependencies: C++, Python3, g++ (tested to

compile successfully with the version: 9.4.0 and 11.3.0),

and Python3 Packages (pandas and matplotlib).

• Hardware Dependencies: A single-core CPU desk-

top/laptop will allow 100,000 iterations of Monte Carlo

simulations in 1-3 minutes.

• Data Dependencies: Several input values, such as

the number of attack rounds and the success prob-

ability of attack in a single refresh interval (pk,TS
)

in Equation 8, are required to run the simulation.

We generated these values following the equations

in Section III-B and included the values in ‘scale-

srs/security analysis/montecarlo-event/simscript/input’.

2) Requirements for Performance Evaluations:

• Software Dependencies: Perl (for scripts to run exper-

iments and collate results) and gcc (tested to compile

successfully with the version: 11.3.0).

• Hardware Dependencies: For running all the bench-

marks, a CPU with lots of memory (128GB+) and cores

(64+).

• Trace Dependencies: Our simulator requires traces of

memory accesses for benchmarks (filtered through an L1

and L2 cache). We generate these traces using an Intel

Pin [31] (version 2.12). However, traces extracted in the

format described at the end of the README file by any

methodology (e.g., any Pin version) would be supported.

E. Installation and Experiment Workflow

1) Security Evaluations: The run_artifact.sh in the

scale-srs/security analysis/montecarlo-event folder performs

all the steps required to compile, execute, collate results, and

generate the results shown in Figure 6.

• Compiles the code using the Makefile in the scale-

srs/security analysis/montecarlo-event folder.

• Executes the simulations for all Row Hammer threshold

values, first for 4800, then for 2400, and finally, for

1200.

• Collates the results for all benchmarks and provides the

normalized performance.

• Reproduce the Figure 6.



2) Performance Evaluations: The run_artifact.sh in

the scale-srs/perf analysis folder performs all the steps required

to compile, execute, collate results, and generate the results

shown in Figure 14.

• Compiles the code using the Makefile in the scale-srs-

/perf analysis/src folder.

• Executes the simulations for all benchmarks in parallel

(assuming the trace files are available), first for the

baseline, then for the Scale-SRS, and finally, for

the RRS configuration.

• Collates the results for all benchmarks and provides the

normalized performance.

• Reproduce the Figure 14.

F. Evaluation and Expected Results

1) Security Evaluations: The artifact provides the

get_results_4800.py, get_results_2400.py,

and get_results_1200.py files in the scale-

srs/security analysis/montecarlo-event/simscript folder.

This script allows the collation of the results, and the

commands to collate the successful attack time of Juggernaut

against RRS are provided in the run_artifact.sh

in the scale-srs/security analysis/montecarlo-event folder

and the README file. After the completion of the

run_artifact.sh, the successful attack time for

Row Hammer thresholds of 4800, 2400, and 1200

can be obtained as the aggregate_trh_4800,

aggregate_trh_2400, and aggregate_trh_1200 in

the scale-srs/security analysis/montecarlo-event/results

folder. Also, the regenerated Figure 6 can be

obtained as the Figure6.pdf file in the scale-

srs/security analysis/montecarlo-event/graph folder.

The sample results files for all of the used Row

Hammer threshold values are provided in the scale-

srs/security analysis/montecarlo-event/result folder.
2) Performance Evaluations: The artifact provides the

plot.sh file in the scale-srs-/perf analysis/simscript folder.

This script allows the collation of the results, and the commands

to collate the IPC are provided in the run_artifact.sh

in the scale-srs/perf analysis folder and the README file.

After the completion of the run_artifact.sh, the nor-

malized performance for all benchmarks can be obtained as

the data.csv file in the scale-srs-/perf analysis/simscript

folder. Also, the regenerated Figure 14 can be obtained as

the Figure14.pdf file in the scale-srs-/perf analysis/graph

folder. The sample results files for the baseline, Scale-SRS,

and RRS configurations for all the benchmarks are provided

in the scale-srs-/perf analysis/output folder of the artifact.

G. Methodology

Submission, reviewing and badging methodology:
• https://ctuning.org/ae/reviewing.html
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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