Bespoke Cache Enclaves: Fine-Grained and Scalable Isolation from
Cache Side-Channels via Flexible Set-Partitioning

Gururaj Saileshwar
gururaj.s @ gatech.edu
Georgia Tech

ABSTRACT

Cache partitioning is a principled defense against side-channel
attacks on shared last-level caches (LLCs). Such defenses
allocate isolated cache regions to distrusting applications and
prevent a spy from monitoring the cache accesses of a vic-
tim. But current solutions have severe practical limitations.
Way-partitioning is not scalable as the number of partitions is
limited by cache associativity and page-coloring is inflexible
as it requires coupled DRAM and LLC allocations in the
same ratio. For cache partitioning to be practical, we need
a scheme that can scale to a large number of fine-grained
partitions and places no restrictions on DRAM allocations.
This paper proposes Bespoke Cache Enclaves (BCE), a se-
cure cache partitioning substrate that is scalable in supporting
hundreds of isolated cache partitions and is flexible in allo-
cating cache space independent of memory allocations. BCE
allocates cache space at the granularity of a cluster, a group
of a few sets (e.g., 64 KB in size). The key insight of BCE is
a configurable cache indexing function (determining the line
to set mapping) that guides cache lines of a domain to only
the allocated cache sets, enabling flexible set-partitioning
independent of memory allocations. BCE achieves this by
modifying the cache indexing hardware to include a Cluster-
Indirection Module (CIM), which maps logical-to-physical
clusters of a domain and a Load-Balancing Hash (LBH),
which uniformly distributes lines of a domain among its clus-
ters. Our implementation of BCE with a 32MB 16-way LLC
scalably supports up to 512 isolated partitions while incurring
negligible storage overheads (<2%) and slowdown (1% on
average) compared to a non-secure unpartitioned LLC.

1. INTRODUCTION

Cache side-channel attacks allow malicious programs to
leak sensitive information from victim programs by observing
their data accesses and changes to the shared cache state.
Last-level caches (LLCs) are particularly vulnerable as they
are typically shared among several processor cores which
may simultaneously run programs of distrusting users. Such
attacks can cause serious security and privacy breaches, such
as leaking secret AES/RSA keys [24], user keystrokes [36],
user browsing history [44,45], etc. Thus, there is a pressing
need for designing secure yet high-performance LLCs.

Cache attacks fall under three broad categories: conflict-
based attacks (e.g., Prime+Probe [27]) that leak informa-
tion via evictions from cache sets shared between a vic-
tim and spy process, shared-memory-based attacks (e.g.,
Flush+Reload [55]) that leak information via hits to shared

Sanjay Kariyappa
sanjaykariyappa@ gatech.edu
Georgia Tech

Moinuddin Qureshi
moin@gatech.edu
Georgia Tech

cache lines, and cache-occupancy based attacks [44,45] that
leak information based on changes to the space used by the
victim in the shared LLC. The two main classes of defenses
for cache attacks are randomization and partitioning. Ran-
domized LLCs [31,32,38,46,51] randomize the mapping of
addresses to cache-sets to make conflict-based attacks harder
and duplicate shared lines across trust domains [38,51] to
mitigate shared-memory attacks. However, they still allow
a victim and a spy to contend for the limited cache space
and are vulnerable to cache-occupancy attacks [44,45]. Such
attacks [44] can perform remote website fingerprinting across
browser tabs using just HTML+CSS in a malicious page and
can subvert even advanced browser security measures like
Chrome Zero [39], which limits JavaScript and timer access.

Cache partitioning [5,12,14,21,23,34,48,49] provides a
principled defense against all three classes of cache attacks,
by fully isolating the cache usage of victim and spy programs
and is the focus of our paper. These defenses achieve such
isolation by allocating non-overlapping cache regions to dis-
trusting domains (encompassing cores, VMs, processes, or
enclaves in a process). Without loss of generality, in this pa-
per, we assume domains to be at the granularity of processes.

An ideal LLC partitioning defense should have the follow-
ing properties:

1. Security: The scheme should prevent the spy from mon-
itoring hits and misses of the victim by disallowing any
accesses outside its allocated cache space and also prevent
inferences from shared state like replacement policy.

2. Scalability: The scheme should support hundreds of iso-
lated LLC partitions. This is because the LLC could
be shared between 64 — 128 cores on server systems;
even on client systems, applications like Chrome Browser
seeking isolation between web pages can spawn 50 - 100
processes, as characterized by Chrome Site Isolation [35].

3. Fine-Grained Allocations and Flexibility: The scheme
should provide fine-grained allocations as sensitive pro-
grams like encryption algorithms can have small cache
working sets (e.g., AES T-Tables are 8KB). LLC alloca-
tions should also be independent of memory allocations
and flexibly manageable, as the need for memory (foot-
print) and cache capacity (locality) may not be correlated.

Unfortunately, no existing cache partitioning defense sat-
isfies all three properties. Way-partitioning [14,21,23,49]
schemes allocate cache-space at way granularity, with each
domain getting one or more LLC ways. But this has limited
scalability as the number of partitions is restricted by the
cache associativity: e.g., a 16-way cache only supports up to

(®) Limited Partitions (Coarse-Grained) (%) Inflexible (DRAM-Mapping Based)) Scalability) Flexibility
Ways Ways Ways
°® 00 °®
[l L I o® l
Y — b Sets /@:;_\ Sets Y — 2F) Sets
Static 00 | s Dynamic\\
L b Function .. Function O d Function
DRAM LLC DRAM LLC — LLC

(a) Way-Partitioning

(b) Page Coloring

(c) Bespoke Cache Enclaves (BCE)

Figure 1: (a) Way-partitioning provides few partitions, restricted by the LLC associativity (b) Page-Coloring has finer
allocations but does not allow flexible use of DRAM and LLC in different ratios. (c) BCE allows large number of fine-
grained cache allocations and flexible memory usage, with dynamic indexing to guide lines to allocated cache regions.

16 partitions which is inadequate if the number of cores (or
threads) increases beyond 16. Even if the number of ways
equals number of desired partitions, such a design provides
1-way (direct-mapped) partitions with severe conflict-misses.
Lastly, such solutions only provide coarse-grained allocations
(e.g., a 32MB 16-way cache provides 2MB partitions), which
is inefficient for small working-set programs (e.g., AES).

LLCs can also be partitioned along sets. As LLC sets al-
located to a process depend on the locations of its physical
pages, Page-Coloring [34] divides memory pages into differ-
ent colors based on the cache sets they map to and allocates
pages of only a subset of the colors to a process. MI6 [5]
similarly achieves isolation by allocating physical memory
to processes based on the sets the memory addresses map to.
Such solutions are inflexible as they couple DRAM and cache
allocations in the same ratio (e.g., to obtain half the cache
space, a process needs half the memory capacity), whereas
memory (footprint) and cache capacity (locality) may not
be correlated. Ideally, cache partitioning should not restrict
virtual-to-physical mapping, keep memory and cache alloca-
tions independent, and scale to a large number of domains.

To that end, this paper proposes Bespoke Cache Enclaves
(BCE), a cache-partitioning defense that is scalable to hun-
dreds of isolation cache partitions and has the flexibility to
allocate cache resources independent of the memory map-
pings. BCE allocates cache space at the granularity of a
cluster, a group of few contiguous cache sets (we use a clus-
ter of 64 sets, i.e. 64KB). Each domain gets a configurable
number of clusters isolated from other domains (each domain
has its own “enclave” in the cache). The key insight enabling
this is a flexible cache indexing function governing the line to
set mapping, which ensures cache lines of a domain are only
directed to the allocated clusters as shown in Figure 1(c).

To support configurable clusters per domain, the cache
indexing in BCE needs to address several challenges:

1. Non-Contiguous Clusters: Over time, the available clus-
ters could be fragmented all over the LLC and the clusters
allocated to a new domain could be non-contiguous and
at arbitrary LLC locations. The set-indexing needs intelli-
gent indirection to map lines to arbitrary LLC locations.

2. Non-Power-of-2 Clusters Allocation: With different num-
bers of clusters per domain, some domains might be al-
located a non-power-of-2 number of clusters to avoid
leaving the clusters unallocated. The set-indexing needs
intelligence to distribute lines uniformly among even non-
power-of-2 clusters to minimize conflict misses.

3. Constant Time Indexing: As the set-indexing logic itself
is shared by all domains, the indexing logic needs to be
constant time to prevent any new timing side-channels.

BCE addresses these challenges with two hardware mod-
ules for set-indexing. First, a Cluster-Indirection Module
(CIM), which maps clusters of a domain (logical clusters)
to physical clusters in the LLC. To ensure this mapping is
constant-time, it uses two levels of indirection to perform
the translation in 2-cycles. Second, to ensure uniform map-
ping of addresses within even non-power-of-2 clusters of a
domain, it uses a Load-Balancing Hash (LBH) to randomize
the mapping of addresses to logical clusters within a domain
and minimize conflict misses.

BCE also provides ISA extensions for software to request
isolated LLC regions (at cluster granularity), which can be
used for adding cache isolation to software sandboxing so-
lutions like Google’s NaCl or Chrome Site Isolation; the
set-indexing and its security are provided by hardware.

We analyze the security of BCE and show it provides the
strong isolation of secure cache partitioning schemes (such as
DAWG [21]) while significantly increasing the flexibility and
scalability of partitioning by providing hundreds of alloca-
tions and at fine-granularity. At its best, BCE can significantly
improve performance with bespoke-sized cache allocations
(by up to 40% compared to DAWG as per our case study in
Section 5.6). On average, BCE’s performance is functionally
equivalent to Page-Coloring (within 1% slowdown).

Overall, this paper makes the following contributions:

e We propose Bespoke Cache Enclaves (BCE), a cache
substrate that can provide fine-grained cache allocations,
support large number of domains, while not placing any
restrictions on page mapping policies and page sizes.

e We propose an indirection scheme (CIM) that allows the
logical clusters of a domain to be placed at arbitrary LLC
locations and yet have constant-time low-latency lookup.

e We propose Load Balancing Hash (LBH), a simple and
effective way to distribute the lines of a domain uniformly
among an arbitrary number of clusters.

We evaluate BCE for a 16-core system consisting of a
32MB 16-way LLC. BCE incurs a slowdown of 1.3% com-
pared to a non-secure baseline without any partitioning while
being scalable to hundreds of partitions compared to about 16
with the state-of-the-art DAWG [21]. BCE incurs a storage
overhead of less than 2KB for newly added structures and
additional 9 bits per tag-store entry (less than 2% of storage).

2. BACKGROUND AND MOTIVATION

We first describe the types of cache side-channel attacks
that leverage shared caches and then discuss prior cache par-
titioning works and their limitations to motivate our solution.

2.1 Threat Model

Our threat model, shown in Figure 2, assumes a victim and
spy running on different cores as resource-allocation often
occurs at the granularity of a physical core in virtualized or
cloud settings. Here, L1 and L2 caches are typically core-
private and sharing of caches occurs at the LLC (e.g. L3-
cache); hence we focus on side-channel attacks via LLCs. In
case the L1 and L2 caches are time-shared or spatially shared
among a few distrusting hyper-threads, we assume they are
partitioned along ways or flushed on context-switches. Note
that our proposal is also quite applicable to systems that share
large L2 caches among many cores (e.g. Apple M1 CPUs).

Similar to prior cache partitioning works [21,23,34], we
limit our focus to stateful cache attacks, where the spy ob-
serves latency variation due to LLC state changes by the
victim (e.g., install, replacement-state update) which remain
in the cache and leak information much after the victim execu-
tion completes. Like prior works, our threat model excludes
attacks relying on bandwidth contention on NoCs [28,47] or
LLC ports as they are transient in nature, are quite susceptible
to noise as they typically cause relatively small latency differ-
ences, and are thus less concerning. Note that our solution
does not hinder any mitigations for these transient attacks
such as bandwidth partitioning or not scheduling distrusting
applications simultaneously.

DRAM Memory
i

L3 Cache
(Shared)
CORE-1 oo CORE-N

Figure 2: Threat model focuses on shared LLC attacks.

2.2 Types of LLC Side-Channel Attacks

There are three classes of LLC side-channel attacks capa-
ble of leaking confidential secrets from a victim process.

Conflict-Based Attacks. Such attacks rely on a spy being
able to observe evictions of its lines based on addresses ac-
cessed by a victim due to set-conflicts. For example, in the
Prime+Probe [27] attack, a spy primes cache-sets shared with
a victim, allows the victim to execute and evict its lines, then
observes which lines got evicted to infer addresses accessed
by a victim; other attacks [6,52] use changes to the order of
evictions to infer a victim’s replacement state updates. Such
attacks require shared cache sets between a victim and a spy.

Shared-Memory Based Attacks. Such attacks rely on a
spy being able to observe hits on addresses shared with
a victim, that is typically read-only shared memory from
shared-libraries or memory shared via de-duplication by the
OS [1,54]. A classic example is the Flush+Reload [55]
attack, where a spy flushes a shared line from the cache,

allows the victim to execute and install the line into the
cache, then checks for a hit on the line to infer if the vic-
tim accessed it. Other variants include Evict+Reload [17],
Thrash+Reload [40], etc. A key requirement of such attacks
is the sharing of cache lines between distrusting processes.

Cache-Occupancy Based Attacks. Such attacks rely on a
spy observing changes to its LLC working set due to cache us-
age by a victim, to infer sensitive information about a victim.
A recent work [45] used such an attack to fingerprint websites
visited on a web browser. In this attack, a spy web page peri-
odically fills the entire LLC with its lines, allows the victim
web page to execute, and then the spy counts the number
of its lines that get evicted in each time period to develop a
fingerprint of the website, which is matched with a repository
of fingerprints to identify the website. A subsequent advance-
ment [44] showed that such website fingerprinting attacks
can be mounted with just HTML+CSS code rendered in a ma-
licious web page on the same browser. Given such minimal
requirements, these attacks are successful despite browser
security measures like Chrome Site-Isolation [35], which
renders web page content from different sources in separate
processes, and Chrome Zero [39] which limits JavaScript and
timers in web pages. All such attacks only require dynamic
sharing of LL.C space between a spy and the victim process,
and hence are only mitigated if software explicitly requests
isolated partitions of the cache for a spy and a victim.

2.3 Cache-Partitioning Based Defenses

Partitioning the LLC across distrusting applications can
prevent all three classes of cache attacks, as it provides a
notion of strong isolation, i.e. the cache state observable
by a program is solely a result of its own execution and is
unaffected by any other program’s cache-accesses. Current
LLC-partitioning schemes broadly fall under two categories.

2.3.1 Way-Partitioning

Such solutions partition the LLC based on ways, allocating
one or more non-overlapping ways to processes in different
trust-domains. The state-of-the-art way-partitioning solution,
DAWG [21], stores a software-configurable bit-mask for each
domain in the cache-controller, which is used to determine
the ways to be checked for cache-hit determination on LLC-
accesses and eviction-decisions on LLC-misses. This allows
DAWG to provide isolation across cache partitions of differ-
ent trust-domains and prevent cross-domain hits or evictions
or replacement policy updates. Along with OS support to
ensure processes across different trust-domains only share
read-only lines which are duplicated in each cache partition,
this design prevents any sharing of cache-space or shared-
lines or shared-sets between domains.

Pitfall: Unfortunately, the number of simultaneous trust-
domains in such a design is limited to the LLC associativity
(number of ways). With associativity being limited to 16 — 32
for LLCs as the number of cores continues to increase, way-
partitioning does not scale to a large number of trust-domains.
Moreover, the partitions available are coarse-grained (2MB
for a 32MB 16-way LLC), which results in inefficient cache
allocations for applications with small cache working sets
(e.g. AES encryption). Ideally, LLC allocations should scale
to a large number of domains and be fine-grained in size.

g %g
; |
LLC 3 LLC
DRAM DRAM
(a) Round-Robin Colors (b) MiI6

Figure 3: Page-coloring based cache partitioning.
(a) Typical schemes assign consecutive colors to consec-
utive physical pages. (b) MI6 [S] partitions both the
DRAM and cache sets into 64 contiguous regions and as-
signs an entire DRAM and cache region a single color.

2.3.2 Page Coloring

Page Coloring [34,43] defenses partition the LL.C along
sets by dividing memory pages into colors based on the cache
sets they map to and allocating pages of different colors to
distrusting processes. Typically, such schemes assign distinct
colors to successive 4KB pages, as shown in Figure 3(a),
and the OS allocates pages of as many colors to a process
as the amount of cache space desired. This supports a large
number of colors (a 4KB page of one color maps to 64 LL.C
sets) and up to 512 trust-domains with a 32MB, 16-way LLC.
However, such solutions are not compatible with large pages
(e.g., a 2MB page covers the entire 32MB 16-way LL.C with
a single color), which can lead to significant TLB pressure.

MI6 [5] makes page-coloring friendly to large pages. It
statically partitions the DRAM and LLC space into 64 con-
tiguous regions and modifies the cache indexing to have a
static 1-to-1 mapping of each DRAM and LLC region, as
shown in Figure 3(b). As each LLC and DRAM region have
one color, MI6 supports up to 64 colors and 64 trust domains.
While domains may be assigned more than one color, to ef-
fectively utilize multiple cache regions, a domain requires
its working-set to be spread by the OS uniformly across all
allotted DRAM regions. However, MI6 observes that OS
typically allocates pages contiguously causing clustering of
hot data in one region and inefficient LLC utilization.

Pitfall: All page-coloring solutions cannot manage DRAM
and cache space independently as they require allocations of
both in the same ratio (e.g., to claim half the cache, a domain
must be given half the DRAM space). This results in inef-
ficient use of cache space or memory space: an application
with a large memory footprint but poor cache locality (e.g.,
graph applications) needs significant DRAM space but not
much cache space; meanwhile, a data-intensive kernel with
high locality but small memory footprint (e.g. encryption or
small matrix-multiply) may not need much DRAM space but
benefits from larger cache space. Ideally, cache partitioning
decisions should be independent of the memory allocations.

2.4 Goal: Scalable & Flexible LLC Isolation

Our goal is to develop a secure cache partitioning substrate
for LLCs that scalably supports a large number of isolated
cache partitions (without being restricted by the associativity
of the cache) and performs fine-grained cache allocations.
At the same time, it should be flexible in making cache allo-
cations to a domain without placing any restrictions on the
memory capacity allocation, virtual-to-physical mapping, and
page sizes. To that end, we propose Bespoke Cache Enclaves
(BCE), a design that achieves all these goals.

3. BESPOKE CACHE ENCLAVES

To develop a scalable and flexible LLC partitioning scheme,
we focus on the cache indexing function which governs the
mapping of addresses to cache sets. Prior cache partitioning
defenses, using way-partitioning or page-coloring (including
MI6), have fixed indexing functions configured statically at
design time. The key insight of our work, Bespoke Cache En-
clave (BCE), is that the cache indexing can be made dynamic
to guide addresses of a domain to only the isolated cache
region (or cache “enclave”) of the domain. We first provide
an overview of BCE and then the design of its components.

3.1 Overview of BCE

BCE is a set-partitioning scheme that allocates cache space
at the granularity of clusters (group of contiguous sets) and
provides each security domain with an isolated cache partition
consisting of one or more clusters. Without loss of generality,
we use a cluster size of 64 sets (64KB) in our design to match
the granularity of page-coloring (although our design can
support clusters as small as a single set). Thus, our 32MB
16-way LLC is divided into 512 contiguous clusters (also
referred to as physical clusters) and each of these is identified
by a unique Physical Cluster ID (PCID).

BCE allows each domain to be allocated a configurable
number of clusters (also referred to as logical clusters), and
these clusters could be located at any PCID in the LLC. For
example, as shown in Figure 4, Domain-A (e.g., a cache-
sensitive workload like AES) could be allotted many LLC
clusters and Domain-B (e.g., a cache-insensitive graph appli-
cation) could have only one LLC cluster, and these could be
located at arbitrary physical locations in the LLC. Addition-
ally, BCE allows independent LLC and memory allocations.
For example, Domain-A could have a small memory footprint
whereas Domain-B could have a large footprint, independent
of their cache allocations. BCE allows complete flexibility
in LLC management, supporting few domains with hundreds
of clusters per domain or even hundreds of domains with
few clusters per domain. The indexing hardware of BCE is
responsible for mapping a given line address and Domain-ID
into a cache set in one of the allocated clusters of the domain.

009
o Dynamic
LLC Indexing
DRAM LLC

Figure 4: Overview of BCE Capabilities. BCE allows a
configurable number of LLC clusters to be allocated to
each domain, independent of memory allocations.

Challenges. As the number of clusters given to each domain
can vary (from 1 to 512 in our design) and these clusters
could be located anywhere in the cache, there are two key
problems faced by BCE in mapping addresses to cache sets.
First, how to store the mappings of where the clusters of each
domain are physically located in the LLC while ensuring
fast lookup, given that the clusters can be non-contiguous

and in arbitrary locations. Second, how to uniformly map
addresses among the clusters of a domain to minimize set-
conflicts, given that each domain can be configured with a
different number of clusters. The first problem is a mapping
problem that can be handled via indirection; the second is
a load-balancing problem that can be handled via effective
hashing of addresses. Lastly, the security of isolated cache
regions must be guaranteed by the indexing logic in hardware,
which itself needs to have constant-latency lookup to prevent
new timing side-channels, as it is shared among all domains.

DomainID
PCID-0
NumClustersTable SetlD |PCID-1
+ v PCID-2
. PCID-3
Line l | LCID | PCID
Address LBH Gl
LLC

LLC Indexing Hardware ClusterOffset

Figure 5: Overview of BCE Cache Indexing, which
maps Line Address and Domain-ID to set-index. The
Load-Balancing Hash (LBH) uniformly hashes addresses
among Logical Clusters of a Domain (LCID) and the
Cluster-Indirection Module (CIM) maps LCIDs of a do-
main to Physical Cluster IDs (PCIDs) of the LLC. PCID
in conjunction with cluster-offset provides the set index.

Solutions. BCE’s cache indexing hardware has two com-
ponents, as shown in Figure 5. First, a Cluster-Indirection
Module (CIM) to store and lookup the physical locations of
the clusters of a domain (i.e., logical clusters identified by
LCID). Second, to determine which LCID an address maps to,
a Load-Balancing Hash (LBH) is used, which maps addresses
of a domain uniformly across all its clusters, regardless of the
number of clusters. On an LLC access, the LBH maps a line
address and DomainID to an LCID and the CIM lookup using
this LCID provides the physical LLC location of the cluster
(PCID), where the set corresponding to the line address is
located. The set within the PCID is identified by the cluster-
offset bits (the 6 least-significant bits of the line-address) and
indexed by concatenating the PCID and cluster-offset bits.
Note that BCE guarantees the isolation properties for security
in hardware and is carefully designed to provide constant-
time accesses to avoid new side-channels, while software is
only responsible for deciding the number of clusters for each
domain. We now describe each component of BCE.

3.2 Cluster-Indirection Module: Maps Clusters

The Cluster-Indirection Module (CIM) is responsible for
locating the LLC clusters allocated to a domain. To access a
cache set, line addresses are hashed to logical clusters private
to a domain (by the LBH), which may be located anywhere
in the LLC. To locate these clusters, each logical cluster of a
domain, i.e. Logical Cluster ID (LCID), must be translated
to its allocated LLC cluster, i.e. Physical Cluster ID (PCID).

Design Constraints. The design of the CIM that can trans-
late domain LCIDs to LLC PCIDs has two key requirements:
[fexibility and fast lookups. With our LLC divided into 512
clusters, there can be up to 512 domains each with one cluster
or one domain with all 512 clusters. The CIM data structures

storing the cluster mappings need to be flexible enough to
store these mappings for allocations of up to 512 clusters, for
up to 512 domains. Additionally, the CIM needs to support
fast lookup as it is in the critical path of LLC accesses. One
option for storing cluster-mappings is a hash-table. How-
ever, such a design is prone to hash-conflicts and variable
access-latency, which is a security vulnerability. As the CIM
is shared by all domains, including mutually distrusting ones,
the CIM itself can become the target of conflict-based attacks,
where a spy in one domain observes variation in latency to
access cluster-mappings due to changes in mappings a victim
in another domain. To prevent such new side-channels, we
need to ensure the CIM has constant access latency. To that
end, we design the CIM with two tables and indirection.

Design. Figure 6 shows the two-level CIM design. The
Cluster Location Table (CLT) keeps an ordered list of valid
LCID to PCID mappings for each domain with at least 1 valid
cluster. The mappings for each domain are kept contiguous
in the CLT, starting with the base entry (LCID-0) for each
domain. The Domain Base Table (DBT) tracks the location
of the base entry (LCID-0) in the CLT for each domain. To
translate an LCID to PCID, the DBT is accessed with the
DomainID to obtain a Pointer to the Base Entry (BasePtr)
of that domain in the CLT. Adding the LCID to the BasePtr
provides the CLT location for the LCID of that domain. Ac-
cessing this CLT location provides the required PCID, which
is concatenated with the cluster-offset bits to get the set-index.

Cluster Location
Table (CLT)

PCID

; 9-bit 6-bit

Domain Base
Table (DBT)

BasePtr

i LCID
g (951
: . LLC-SetID
512 entries 512 entries

Figure 6: Design of the CIM. The DBT provides the base
entry location (L.CID-0) of a domain in the CLT. The base
location added to the LCID, points to the CLT-entry con-
taining the required PCID.

Isolation Guarantees. The CIM hardware, by design, pro-
vides the security guarantee of cache isolation, as only the
LLC clusters allocated to a domain (those addressable by the
CLT entries of the domain) are accessible to cache lookups
from that domain. Only the CLT entries of a particular do-
main are accessible on cache lookups from that domain, as
the LCID used to calculate the CLT index is always less than
the number of clusters allocated to that domain (guaranteed
by the LBH and the NumClustersTable in Figure 5). A more
end-to-end security analysis is provided in Section 4.

Storage, Logic and Latency. To support up to 512 PCIDs,
the CLT needs at most 512 valid entries. Similarly, the DBT
requires at most 512 entries for 512 domains. As both tables
have 9-bit entries and a 1-bit valid-bit per entry, the tables
require a total of 640 bytes storage. Such small tables can be
implemented as registers for fast lookup. Thus, the translation
of LCID to PCID via CIM requires two register lookups and
one combinational 9-bit adder, taking 2 CPU cycles.

3.3 Load-Balancing Hash: Maps Lines

While CIM ensures secure isolation between clusters of
different domains, the performance of BCE relies on how
uniformly addresses map to clusters of a domain (logical
clusters) to minimize set-conflicts. The Load-Balancing Hash
(LBH) is responsible for uniformly mapping line addresses
to logical clusters of a domain (LCIDs).

3.3.1 The Problem of Load Balancing

In conventional LLCs, a modulo function is used as a
uniform set-indexing function (SetID = LineAddr 7 Num-
Sets), that is equivalent to selecting least significant bits of
the line address for power-of-2 NumSets. However, in BCE,
each domain could have a configurable number of clusters
(from 1 to 512). These are not constrained to be a power-of-2,
as that can result in under or over-provisioning of cache space
for larger cache allocations. Ideally, we would like LBH to
have the uniformity of the modulo function shown in Fig-
ure 7(a); but computing a modulo for non-power-of-2 divisors
is expensive (requires tens of cycles)! for cache-indexing.

Imbalance with Simple Hashes. Figure 7(b) shows a
simpler, single-cycle hash called Linear-and-Invert, which
maps n-bits of a line-address to an n-bit LCID (where n is
log of NumClusters, rounded up to the next integer). If the
n-bit Line-Address value, say x, is less than the NumClusters,
x is used as the LCID, else x is inverted and used as the
LCID. Thus, either x or Invert(x) is guaranteed to be less than
NumClusters and suitable to be used as the LCID. While this
simple hash is low latency, it has significant non-uniformity.
For example, if a partition has 3 clusters, using two bits of line
address as input to the hash results in one cluster receiving
50% of the lines and other two clusters with 25% lines each.

Logical Cluster ID
within Domain

n-bit 6-bit n-bits 6-bit n-bit 6-bit

ILCID|+| xI_lILCIDl+I

Logical Cluster ID

Line-Address within Domain

Line-Address

b-bits (>n) 6-bit

=

N

X % NumClusters

(b) Linear-And-Invert Mapping

(a) Modulo Mapping

Figure 7: Candidates for LBH (mapping addresses to
LCID): (a) Modulo mapping is uniform but requires
multi-cycle hardware implementation. (b) Linear-And-
Invert mapping is single-cycle but results in imbalance.

We quantify this imbalance with a metric called Load
Imbalance, i.e. the ratio of maximum to average lines per
cluster. Figure 8 shows the load imbalance for the Modulo
and Linear-And-Invert hashes while streaming a large number
of lines, as clusters per domain varies from 1 to 512. Modulo
mapping is close to the ideal value of 100%, whereas linear-
and-invert has imbalance of almost 200%, i.e. some clusters
have 2x the average accesses.

'Hardware implementation of modulo with non-powers-of-2 divi-
sors requires recursive division with O(b) pipeline stages, [8] where
b is the number of bits of dividend (line-address). For our design,
this requires more than 10 stages and a latency of tens of cycles.

—— Modulo Mapping (Slow)
---- Linear-And-Invert Mapping (Fast)

Aooa
!
1

=.

] /

!
!

~

!
!
!
1
!
1
1

S
~<

1 !

[} [}

[} [}
11 11
11 11

1 1 1 1
1 1 1
1 1 1
1 1
1 1
1 1

=R, N NN
U N o N a
S u o wu O
o o ° ° o
1= - R~ SR NN

1
!
1
1

1
7

/
1
7
1

~

i / /
9 / /

= 125% / \ / /'I / i /
S 100% — ! v Y [J.L.___JLI.__M

— 1 2 4 8 16 32 64 128 256 512

Number of Clusters in Domain

]
]
1
1
1
1
1
1
1
1
1
1

ad Imbalance (Max/Avg)

Figure 8: Load imbalance with Modulo and Linear-And-
Invert mappings as the number of clusters in a domain
varies from 1 to 512. Modulo is close to ideal but slow.
Linear-And-Invert is fast but has up to 2x imbalance.

3.3.2 Solution: LBH with Randomizing Hashes

Design. To achieve near-ideal load imbalance with a
single-cycle LBH, we construct it using multiple random-
izing hashes as shown in Figure 9(a). To map a line address
to LCID, the bottom 7 bits of the line-address (x) are checked
to see if it is less than NumClusters (where n is log of Num-
Clusters rounded to next integer) and can be directly used as
LCID (like linear mapping). If not, the line address is trans-
formed using a low-latency randomizing hash, Hj (x), and the
bottom 7 bits are checked again to see if they can be used
as LCID. This process repeats k times with k£ randomizing
hashes; if LCID is still not obtained, then the inverted value
(~x[n—1:0]) is used as the LCID. As each hash is expected
to produce the LCID with a probability greater than half, the
likelihood of using the inverted mapping after 3 - 5 hashes is
quite small and the overall mapping is balanced.

Implementation. To ensure H, (x) to Hy(x) are sufficiently
uniform and independent, while also having a fast hardware
implementation, we construct the hash-functions using Ran-
dom Binary Matrices (RBM). As shown in Figure 9(b), each
H;(x) consists of B x n bits sized matrix (default: 24 x 9)
with bit values statically populated from a uniform random
distribution. Each bit of the output hash is computed as bit-
wise AND of the input-vector and the corresponding row of
the RBM, followed by an XOR reduction. Successive hashes
(Hj to Hy) are generated with different matrix bit values, all
sampled from the same uniform random distribution. Such a
construction of Hj (x) to Hi(x) has the property that any two
functions selected at random only have a small probability of
generating the same hash for the same input (such RBMs have
been shown to create Universal Classes of Hashing Functions
with this property [9]), and hence suited for our purpose.

Results - Reduced Imbalance. Figure 10 shows the load
imbalance with LBH using multiple randomizing hashes. We
choose RBM dimensions of 24 x 9, to support LCID of up
to 9-bits to support up to 512 NumClusters. Using 1 hash
reduces the worst-case imbalance to 112.5%, 3 hashes reduce
it to 101.3%, and 5 hashes to 100.3% (in comparison, using
0 hashes, which is equivalent to the linear-and-invert, results
in 200% imbalance as shown in Figure 8). With 3 — 5 hashes,
the worst-case load imbalance is very close to ideal 100% and
thus the mappings with LBH adds negligible conflict misses

—» X[n-1:0]< NumClusters Yes

i Logical Cluster ID
Line-Address No

within Domain

Yes
H (x) < NumClusters n-bit 6-bit

B-bits 6-bit ™
0o
Yes
L > T oma |l < NamCluers | e |]
YNo
[H6) < NumClusters %
v No

Invert(x[n-1:0])

(a) Design of LBH (Using Multiple Randomizing Hashes)

[TI=LLT]
(RBM) (o[1]--[o[1]1] RBM-Row
-
ANDs 24-bits 9-bits
J—> o/1]..|o[1|1}>XxOR~] '
DZE]:D—ah 1]o[.J1]o[1]>xor }””'b’t
X ES Output
B-bit Input 4"5\ 1{1{..[1]o[0}>XxOR
(default:24)|| : H H
o[1].Jo[1]o}>x0r

Random Binary Matrix 24-bit Input

1-bit output i
(c) Hash Circuit

(b) Randomizing Hash: H; (x)

Figure 9: Design of Load-Balancing Hash (LBH). (a) Mapping of Line-Addresses to LCID via multiple randomizing
hashes: If a linear-mapping (x[n — 1 : 0]) does not work, n-bit hashes H;(x) to Hi(x) are used to attempt different
mappings; if none works, inverted-mapping (~ x[n — 1 : 0]) is used. (b) Implementation of randomizing hash H;(x): A
static 24 x 9 bit Random-Binary-Matrix (RBM) is used, with each H;(x) matrix having different random values. Each
output-bit computation involves bitwise-AND of input with an RBM-row followed by an XOR-reduction. (c) Hash
Circuit Logic: Circuit has a critical path of 1 AND and 4 XORs (three 2 input and one 3-input in XOR Tree). As all
H;(x) are computed in parallel, the critical path of LBH consists of k + 1 n-bit comparators, 1 AND and 4 XORs.

)

2113%
< 112%
E 111%
110%
S 109%
S 108% —— 1 Hash
.
g o7 ---- 3 Hashes
£ 106%
T 105% —— 5 Hashes
g 104%
103%
= 102%
T 101% -~ v,\\ v'_'-\ \
S 100% —derk= b AN AN N
— 1 2 4 8 16 32 64 128 256 512

Number of Clusters in Domain

Figure 10: Load Imbalance with LBH using multiple
randomizing hashes (24-bits of line-address as input) as
the number of clusters in a domain varies from 1 to 512.
With 3-5 hash functions, imbalance is within 1% of ideal.

due to non-uniformity. Note that the randomizing LBH map-
ping is statically provisioned at design-time, deterministic,
and only for performance: it can be disclosed to software if
needed for software to customize data-structure layout for
further minimizing set-conflicts.

Logic, Latency and Storage. The circuit for each hash,
shown in Figure 9(c), has a critical path of 1 AND gate and
4-5 XOR gates (for XOR-reduction) from input to output.
For LCID computation with LBH, the k hashes (k =3...51is
sufficient) can be computed in parallel, and hence the overall
critical path has only one hash circuit (1 AND and 4 XOR
gates) and k + 1 n-bit comparators to check if hash-values are
less than NumClusters. This computation incurs a latency of
less than one CPU cycle (as cycle time in modern processors
is typically designed for about 20 gate delays). The number
of hash-functions and input-size (i.e. number of bits of the
line-address used as the input to the hashes) determine the
storage overheads of LBH. Using more input-bits consid-
erably reduces imbalance as LBH generates more uniform
mappings over a larger input space; we find that using 5 hash
functions of 24 x 9 bits is sufficient for minimizing the load
imbalance and requires negligible storage of 135 bytes.

3.4 Software Interfaces to Request Clusters

Like prior cache partitioning defenses [5,21], BCE pro-
vides software interfaces to request isolated LLC partitions of
a given size from the hardware. BCE has two new privileged
instructions, BCE_alloc and BCE_dealloc for creation and
deletion of LLC allocations for domains, usable by privi-
leged software like OS responsible for resource allocation.
The OS may provide system-calls that allow applications to
request custom-sized LLC allocations (with appropriate fair-
ness checks); this can spur research on real-world systems us-
ing customizable cache isolation (e.g., extensions of Chrome
Site Isolation [35] providing web pages bespoke cache iso-
lation along with process isolation). We now describe the
hardware operations performed on these instructions.

BCE_alloc: This instruction creates a new LLC partition
for a trust domain. It takes two inputs: the DomainID and
the number of clusters to be allocated to the domain. If the
requested number of LLC clusters are available, then the in-
struction returns success, otherwise failure. If successful, the
cache controller initializes a contiguous list of CLT entries
(at the end of all valid CLT entries) with the PCIDs allocated
for this domain. The DBT entry for the domain is initial-
ized to point to the first CLT entry of the domain and the
NumClustersTable is updated with the allocated clusters.

BCE_dealloc: This instruction deallocates an existing
LLC partition. It takes a DomainID as an input, and invali-
dates the associated DBT and CLT entries. Subsequently, the
lines in the physical LLC clusters of the domain are flushed
and PCIDs of that domain become free to be allocated to
other domains. The invalidated CLT entries are also com-
pacted and moved to the end of the CLT to ensure that a
subsequent cache allocation can obtain a contiguous cluster
of free CLT entries. Note that the CLT compaction takes tens
of cycles and is much faster than the latency to flush contents
of the freed cache clusters. Fortunately, deallocations are
quite infrequent (only on domain termination, resizing, etc.).

Note that if a domain requires LLC space but the LLC
is fully allocated, partitions of inactive domains (that are
context-switched out) can be deallocated, flushed, and then
re-allocated to a new domain (similar to prior works [21]).

3.5 Putting it Together: BCE Operation

Process-Start. When a new program is launched, it can
be assigned to an existing domain or a new domain. For
programs not desiring security, a single large non-secure
LLC partition can be perpetually reserved. For a process
desiring a new security domain, the OS uses BCE_alloc to
allocate an isolated LLC partition and embeds the DomainID
in the process context. Note that for the security of L1 and
L2 caches, if they are private to a domain, they are flushed
before a new domain begins; if they are shared among a few
hyper-threads/cores, they must be way-partitioned.

LLC-Indexing. All read and write accesses to the LLC in
BCE are accompanied with the DomainID from the thread-
context. For an LLC-access, the LBH hashes the line address
into the logical cluster ID (LCID) and then CIM translates
the LCID into the physical cluster ID (PCID). The PCID in
conjunction with the cluster offset bits determines the set
index for the LLC access and the access then proceeds by
checking this set for a tag-match like a conventional LLC.

LLC-Hit/Miss. On LLC-Hits, replacement state updates
proceed unchanged using any intelligent replacement policy,
as the entire set belongs to a single domain. On an LLC-miss,
the eviction candidate selection is unchanged and is chosen
from the entire set. On dirty eviction, the line addresses for
writebacks are generated by concatenating the tag with cluster
offset of the set; tags are enlarged by 9 bits to support this.

Process-End. When a domain finally exits, the OS uses
BCE_dealloc to reclaim the LLC partition allocated to it.

3.6 Support Required from System Software

Similar to prior secure cache partitioning works [5, 21],
BCE requires additional support from system software for
ensuring correctness and security.

Page-Sharing: Processes that trust each other are allotted
the same DomainlID; they share cache-sets with each other
like conventional caches and have read-write sharing of pages.
Page sharing between distrusting processes in different do-
mains has to be regulated by the OS like in [51], to ensure no
read-write sharing between them and to prevent direct infor-
mation leakage. For read-only shared pages (whose shared
cache lines get duplicated in each domain), the OS is respon-
sible for flushing such pages from each of the LLC domains
when such pages are swapped out or unmapped (just as the
OS updates the page-tables for each of the processes).

Inter-Process-Communication: Data transfer between
processes in a single trust-domain with read-write shared
memory is unchanged. Data transfers between processes
in different domains have to be marshaled by the OS with
special system calls to ensure no secret-dependent data leaks
via such transfers. Also, kernel memory-copying functions
performing data transfer from user-space processes to kernel,
like copy_from_user, need to be modified to ensure the
data is read from user’s cache-partition and written to kernel’s
cache-partition (vice-versa for copy_to_user), like in [21].

Coherence: For cache coherence within processes of the
same domain, coherence protocol is unchanged, except that
all coherence packets include the Domain-ID to ensure cor-
rect LLC sets are accessed on snoop/invalidation requests.

4. SECURITY ANALYSIS

Assumptions. The security focus of BCE is on preventing
cross-domain side-channels relying on LLC state changes,
where a spy observes timing differences due to cache state
modified by secret-dependent activity of the victim. These
include conflict-based attacks [6, 13,27, 52] exploiting cross-
domain evictions from shared cache-sets, shared-memory-
based attacks [16, 18, 37, 54, 55] exploiting cross-domain
hits on shared cache lines, and cache-occupancy based at-
tacks [44, 45] exploiting changes to LLC space used per
domain. While the analysis uses the cross-process setting
for BCE (distrusting processes mapped to different domains)
for its arguments, it is applicable for LLC-isolation between
VMs or even enclaves within a process, if those map to a
security domain. Our focus is the shared LLC, as L1 and
L2 caches are typically private. If L1 or L2 are shared, BCE
assumes they are way-partitioned [21] across domains; this is
practically feasible as typically L1 or L2 caches are shared
by no more than 2—4 threads at a time.

Security Guarantees. BCE promises strict isolation be-
tween LLC partitions of different security domains. The
invariant it guarantees is: the state of the LLC-partition of
one domain is solely determined by its own LLC accesses and
not influenced by any other domain’s LLC accesses. BCE
achieves this by guiding addresses of different domains to
disjoint LLC sets via its flexible LLC-indexing, duplicating
lines of read-only shared addresses across domains, and dis-
allowing read-write sharing of addresses across domains. As
a result, all LLC operations of a domain only affect the LLC-
state of its own domain and cannot affect other domains:

e LLC read or write accesses only have hits on lines
within the LLC sets allocated to the domain; cache-
flushes only impact cache lines within a domain and
do not affect any duplicate lines for the same address
in other domains; coherence-related invalidations are
only allowed within the same domain — this prevents
any cross-domain shared-memory attacks.

e Replacement state updates and victim-selections within
a single set are only performed among the cache lines
of a single domain — this prevents any cross-domain
conflict-based attacks.

e LLC-partition sizes get allocated per domain by priv-
ileged software. The partition sizes are allocated at
the domain creation time and are independent of any
secret-dependent accesses of co-running domains — this
prevents any occupancy-based attacks.

The BCE substrate itself does not introduce any new side-
channels. While the metadata tables in BCE that maintain
cluster-mappings (CIM tables) are shared across domains,
the set-index computation using these tables has constant
latency irrespective of the number of domains in use or their
allocation sizes. Additionally, malicious processes cannot
escape the LLC-partition sandbox enforced by BCE, by ac-
cessing or modifying these mappings as they are maintained
in micro-architectural structures and inaccessible to software.
This ensures the BCE-substrate is itself secure and free from
any new attacks.

1.10

1,08 mmm DAWG
- 1-06 Page-Coloring
2 104 mmm BCE Mean
81
E 1.02
® 1.00 — - R R /R R R R /R -1-E-Pl—
096 gl gl d 7/ i /| i (/] ¢ [/ a4 d 7/ 7/ d [/
2O N Q& & e > I OS> EO » N /\ x R 9 o D S
R N P R R s R N SR . [P S N X<y L@ ° & o § & Q. »
&° & 0 PRSP 0\\3? & & F c @ ?}@e Qp&\ @ \@Q $ S S & ARG N
& N b

[SPEC-CPU2017 |
SPEC-CPU2017

o= e |

> «—{GAP |—

Figure 11: Slowdown of BCE compared with DAWG [21] and Page-Coloring [34]. All numbers are normalized to a Non-
Secure baseline without partitioning. Across 56 workloads (sorted high to low by MPKI in SPEC and GAP suites), BCE
has an average slowdown of 1.3%, while DAWG and Page-Coloring have slowdowns of 2.2% and 0.4% respectively.

5. EVALUATION RESULTS

In this section, we evaluate the performance and costs
of our proposed BCE design and compare it against prior
LLC-partitioning schemes DAWG [21] (that partitions along
ways) and Page-Coloring [34] (that partitions along sets) and
a non-secure baseline LLC without any partitioning.

5.1 Methodology

The system modeled in our study is shown in Table 1. We
use a 16-core system with 32MB 16-way shared L3 cache.
For performance evaluations, we use a trace-driven simu-
lator running program execution traces (of length 1 billion
instructions) generated using Intel-Pintool [25], drawn from
a representative slice of a program using Simpoints [42]. We
evaluate 56 workloads, including 22 SPEC-CPU2017 [7]
and 6 GAP [2] (graph algorithms bc, cc, pr with twitter
and web datasets) benchmarks (16-core rate-mode), and 28
mixed workloads (each has 16 randomly chosen SPEC or
GAP benchmarks). Our baseline is a non-secure shared LLC.
For BCE, we use a 3 cycle overhead for LLC lookup, based
on the latency estimated in Sections 3.2 and 3.3.2.

Table 1: Baseline System Configuration

Processor and Private Caches

Core 16-cores, In-order Execution, 3GHz

L1, L2-Cache /core | L1-32KB, L2-256KB, 8-way, 64B linesize
Last-Level Cache and Main-Memory

32MB, 16-way, 64B linesize, Non-Inclusive

SRRIP Repl [19], 24 cycle latency

45 ns latency

LLC (shared)

DRAM

5.2 Impact on Cache Misses

Table 2 shows the impact of partitioning on the LLC-
misses per thousand instructions (MPKI) averaged across
the different workload suites for BCE, Page-Coloring and
DAWG, compared to a non-secure LLC without partitioning.
Each of the 16 benchmarks in a workload runs on a separate
core and only the LLC is shared: for the LLC-partitioning
schemes, we assume each benchmark is allocated an equal-
sized LLC-partition. All the partitioning schemes incur a
higher number of misses than the non-secure baseline due to
the capacity sharing restrictions imposed.

Table 2: Average LLC MPKI for Non-Secure, DAWG,
Page-Coloring and BCE.

| Workloads || Non-Secure | DAWG | Page-Coloring | BCE
Spec-22 8.42 8.73 8.44 8.44
Gap-6 41.64 4261 41.63 41.63
Mix-28 27.56 29.82 28.53 28.59
[Am-s6 || 2155 [2291 | 22.04 | 2207

On average, partitioning the LLC with BCE increases the
LLC MPKI by 2.4% which is near-identical to the increase
with Page-Coloring, compared to non-secure LLC. This is
because both Page-Coloring and BCE allocate similar-sized
set-partitions under an equi-partitioning policy.

DAWG has 6% higher MPKI than the non-secure design
and this increase is more than double that of BCE. This is
due to increased conflict-misses, as with equal partitions,
DAWG allocates each core with a 2MB direct-mapped par-
tition. Among high MPKI workloads, roms is the worst af-
fected with DAWG, incurring a 20% increase in LLC MPKI.

5.3 Impact on Performance

Figure 11 compares the slowdown of BCE, Page-Coloring
and DAWG (normalized to non-secure LL.C). Across 56 work-
loads, BCE has an average slowdown of 1.3%. The main
drivers of slowdown in BCE are the increase in both the LLC-
misses and the LLC-access latency. The LLC-misses increase
by less than 3% due to the cache space restrictions with par-
titioning, while the cache latency increases by 3-cycles. In
comparison, Page-Coloring incurs a slowdown of 0.4%, as
it incurs similar misses as BCE, but does not increase the
latency for LLC-accesses. However, note that Page-Coloring
requires memory allocation in the same ratio as LLC alloca-
tions, which can lead to memory pressure. Ideally, LLC and
DRAM allocations should be independent like in BCE.

DAWG incurs a higher slowdown of 2.2%, mainly due
to its higher LLC conflict-misses, which outweighs the fact
that it has an identical access-latency as a non-secure LLC.
The higher conflict-misses cause DAWG to incur a worst-
case slowdown of 8% slowdown for roms, with multiple
workloads suffering slowdowns of 4 - 8%. In contrast, BCE
incurs a worst-case slowdown of 2.5% for parest and 1 - 2%
for other high MPKI workloads, which are sensitive to the
increase in LLC latency in BCE.

5.4 Sensitivity to Increase in LLC Latency

We use a latency overhead of 3 cycles for BCE set-index
computation. Figure 12 shows the slowdown of BCE (nor-
malized to the non-secure baseline) as the latency overhead
is varied from 1 cycle to 6 cycles. As the latency of BCE
increases, the slowdown increases from 0.8% (for 1-cycle
latency) to 2.3% (for 6-cycle latency). In comparison, page-
coloring, which has a 0-cycle additional latency, incurs a 0.4%
slowdown. Thus, our 3-cycle index-calculation (with 1.3%
slowdown) adds less than 1% extra slowdown on average due
to the added lookup LLC latency, which is negligible.

1.03

- I I I I I
1.00 .

1-cycle 2-cycle 3-cycle 4-cycle 5-cycle 6-cycle

Slowdown
5
N

Figure 12: BCE slowdown as the latency overhead of set-
index computation varies (default: 3 cycles)

5.5 Sensitivity of Performance to LLC Size

As LLC size increases from 8MB to 64MB, slowdown
of BCE compared to non-secure LLC varies from 1.1% to
1.8%. At larger sizes, application working sets start to fit
in. Therefore, at higher LLC hit-rates, the impact of the
increased access-latency and misses is more pronounced; yet,
BCE sustains a slowdown <2%. Similarly, Page-Coloring
has slowdown varying between 0.2% to 0.9%; slowdown for
DAWG varies between 2.2% to 2.7% with increasing cache-
size as its higher conflict-misses result in higher slowdowns.

5.6 Benefits of BCE’s Fine-Grained Allocations

With DAWG, the cache partitioning scheme is constrained
to making coarse-grained allocations at way-granularity. For
a 16-core 16-way, 32MB LLC system, DAWG results in
inflexible LLC allocations where each core gets 1-way 2MB
partition regardless of its requirement. This is quite limiting
if one core needs LLC space and the other 15 cores do not
benefit from the allotted LLC space. As BCE has fine-grained
allocations (at the granularity of 64KB), it allows resource
allocation policies the flexibility to allocate few LLC clusters
to programs not requiring much LLC space and more clusters
to programs that require and benefit from LLC allocations.

Figure 13 shows such a scenario where roms is running
with 15 copies of PageRank (pr). roms needs cache space,
whereas pr does not benefit much from it. However, DAWG-
Eq is still forced to equally allocate 2MB LLC (1-way) to
roms and each copy of pr. With BCE, the LLC space allocated
per pr copy can be 2MB if distributed equally among all 16
cores (BCE-Eq), or smaller allocations of 1.5MB, 1MB or
0.5MB per copy of pr are possible (with allocation policies:
BCE-1, BCE-2, BCE-3) allowing roms LLC allocations to go
up to 9.5MB, 17MB, 24.5MB respectively; with such BCE
allocations, relative IPC of roms versus DAWG increases by
up to 40%, while IPC of pr is unaffected (<2% change).

150%
140%

1309 EZA4 Roms (1 copy)
120%

110%

100% -

80%

DAWG-Eq BCE-Eq BCE-1 BCE-2

Il PageRank (15 copies)

E

BCE-3

Relative IPC vs DAWG

Figure 13: Flexibility of BCE vs DAWG. BCE allows
smaller allocations to cache-insensitive PageRank while
cache-friendly roms can have larger allocations, unlike
DAWG with equal allocations of 1-way (2MB) for each
of the 16 cores. BCE-Eq, BCE-1, BCE-2, BCE-3 allocate
2MB, 1.5MB, 1MB, 0.5MB LLC to each copy of PageR-
ank, leaving SMB, 9.5MB, 17MB, 24.5MB LLC for roms.

5.7 Storage Overheads

Implementing BCE requires additional structures to sup-
port the flexible indexing. Table 3 summarizes the stor-
age overheads for the newly added structures with BCE.
The index-computation module in BCE includes the Load-
Balancing-Hash requiring 5 RBM hashes and three tables
(Num-Clusters-Table, Domain-Base-Table, and Cluster-Location-
Table), each with 512 entries. The newly added structures
require a storage overhead of 2KB to support 512 clusters. To
support 256 clusters, these structures would need an overhead
of 1KB, whereas for 1024 clusters they would need 4.4KB.

Table 3: Storage Overheads for BCE Structures

| New Structure || Bits/Entry | NumEntries | Storage |

Random-Binary-Matrix Hash (RBM) 24%x9 5 135B
Num-Clusters-Table (NCT) 9 512 576B
Domain-Base-Table (DBT) 10 512 640B
Cluster-Location-Table (CLT). 10 512 640B
| Total Storage for New Structures || | | 2 KB |

BCE also needs the tag-entry of each line to be increased
by 9-bits to allow line-address of a cacheline to be correctly
regenerated for writebacks. While conventional LLCs gen-
erate the line-address by concatenating the tag with 15-bit
set-index, BCE only has a 6-bit cluster-offset that it can use
for this purpose. Hence, the tag size is increased by 9-bits to
allow concatenation of the tag and cluster-offset to regenerate
the line-address. This increases LLC-SRAM area by 1.8%.

6. RELATED WORK

We first discuss cache-partitioning solutions for security
and performance, and then other cache side-channel defenses.

6.1 Cache-Partitioning for Security
Page-Coloring [20,34,43] was an early OS/VMM-based
approach for LLC partitioning that guides sensitive program
memory to specific pages to ensure the usage of isolated LLC
sets. But this requires memory-allocations in the same ratio

as LL.C-allocations, and is incompatible with large pages; this
can result in high overheads on memory or cache constrained
systems. MI6 [5] extends page-coloring to allow support of
large pages with static changes to the set-indexing; however
the LLC allocations are still in the same ratio as DRAM allo-
cations causing under-utilization of LLC or DRAM; addition-
ally, this design only supports up to 64 domains. In contrast,
BCE allows independent LLC and DRAM allocations pro-
viding the flexibility needed by real-world applications such
as graph workloads, and is scalable to hundreds of domains.

DAWG [21] is the state-of-the-art way-partitioning de-
fense providing isolation from cross-domain hits and evic-
tions. Other prior solutions such as PLCache [49], and CAT-
alyst [23] prevent cross-domain evictions and not hits, and
thus are vulnerable to hit-based replacement policy attacks.
NoMo cache [14] and SecDCP [48] allow increasing way-
allocations via a security-performance trade-off (NoMo) or by
allowing one-way information leakage (SecDCP). All such
way-partitioning-based solutions only support as many do-
mains/partitions as the cache associativity (typically limited
to 16-32 for LLCs). Our work provides equivalent security
as DAWG, the state-of-the-art, while supporting up to 512
flexible partitions and with better performance.

Jumanji [41] proposes LLC partitioning at the granularity
of LLC-Banks and allocating different LLC-banks to differ-
ent VMs to prevent cross-VM cache side-channels. How-
ever, it does not provide any security between distrusting
processes within a VM, as it uses non-secure utility-based
way-partitioning of the LLC between processes of a VM
which is vulnerable to cross-process Flush+Reload [55] and
cache-occupancy [44,45] attacks. Moreover, it cannot sup-
port LLC isolation between enclaves of a single process as it
caches the LLC-bank mappings in a per-core “VTB” cache
to enable fast indexing, which is vulnerable to new conflict-
based attacks in this setting. In comparison, BCE is more
secure, as it can isolate the cache state between any two trust-
domains: enclaves within a process, processes within a VM
or VMs themselves. Moreover, BCE’s 2-level indexing is
carefully designed to be secure (constant-time) yet fast, un-
like Jumanji’s LLC-bank mappings that need to be cached
leaving them vulnerable. Lastly, BCE can support hundreds
of trust-domains and is more scalable than Jumanji, which
only supports few tens of trust-domains (as many as LLC-
Banks) and requires flushing LLC-Banks on domain-switches
to support more trust-domains causing high slowdown.

SHARP [53] modifies the replacement policy to prefer
same-domain evictions on cache installs which do not leak
information unlike cross-domain evictions. However, cross-
domain evictions are still needed and performed when same-
domain lines are unavailable in an indexed set, allowing
conflict-based attacks to continue. Additionally, SHARP’s re-
strictions on flush instructions prevent Flush+Reload attacks,
but not Thrash+Reload attacks [40] (without flushes). BCE’s
principled cache-isolation mitigates all such attacks.

6.2 Cache-Partitioning for Performance
Utility-Based Cache Partitioning (UCP) [33] monitors
the cache utility for each application and decides the number
of ways to dedicate to each application. While this may be
beneficial for performance, it leaves the cache vulnerable

to occupancy-based attacks. Furthermore, the UCP scheme
suffers from the scalability issues of way-partitioning. K-
Part [15] and PriSM [26] overcome the granularity restric-
tions of way-partitioning by allowing multiple applications
to co-reside in a single way; however, these schemes are in-
secure as applications can still evict each other’s lines. Prior
studies [22] [56] have also used Dynamic Page-Coloring
to dynamically partition the cache space. However, these
schemes have the same short-coming as Page-Coloring in that
memory and cache allocations are coupled. Jigsaw [3] uses
page-mapping algorithms to share the capacity and reduce the
latency of a banked cache. This design does not take security
into account (the allocation and placement decisions based
on utility monitoring are vulnerable to occupancy-based at-
tacks). Finally, all cache partitioning schemes described in
this sub-section are vulnerable to shared memory attacks.

6.3 Alternative Cache Side-Channel Defenses

Defenses such as CEASER [31], CEASER-S [32], RP-
Cache [49], and NewCache [50] adopt randomization of
cache locations for defending against conflict-based side-
channel attacks. ScatterCache [51] and MIRAGE [38] use
randomization along with duplication of lines across domains
to also make shared-memory based attacks harder. However,
recent works [4,30] have shown some of these randomization-
based defenses vulnerable to newer conflict-based attacks and
none of these guard against cache-occupancy based attacks.

HybCache [12] prevents conflict-based attacks by provid-
ing applications fully-associative cache regions and prevents
shared-memory-attacks by duplicating shared lines across
applications. However, it allows dynamic sharing of cache-
space between multiple processes and is thus vulnerable to
cache-occupancy attacks [45]. Also, authors of HybCache
note that “applying it to LLC or larger caches can be expen-
sive" [12]: a fully-associative lookup over thousands of LL.C
lines can be slower than a DRAM access and is impractical.

Attack-detection techniques proposing profiling attacks us-
ing performance counters [11,29] or dedicated hardware [10]
suffer from either false positives or false negatives.

In contrast, BCE provides secure isolation between do-
mains and security against all three classes of cache-attacks
(conflict, shared-memory, and occupancy-based attacks).

7. CONCLUSION

Cache-partitioning is a principled defense against cache
side-channel attacks. However, existing partitioning schemes
relying on page-coloring and way-partitioning face scalabil-
ity and flexibility challenges that limit their adoption. We
enable Bespoke Cache Enclaves (BCE), which provides fine-
grained isolated LLC partitions to programs that are flexibly
managed independent of memory allocations, and which scal-
ably supports several hundred security-domains. BCE incurs
negligible storage overheads (<2%) and slowdown (<1%).

8. ACKNOWLEDGMENTS

We thank the reviewers for their feedback. This work
was partially supported by SRC/DARPA Center for Research
on Intelligent Storage and Processing-in-memory (CRISP).
Gururaj Saileshwar was supported in part by a Georgia Tech
IISP Cybersecurity PhD Fellowship.

REFERENCES

(1]

[2

—_

(31

[4

=

[5

—

[6

—

9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by
using KSM,” in Proceedings of the Linux Symposium, 2009.

S. Beamer, K. Asanovi¢, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

N. Beckmann and D. Sanchez, “Jigsaw: Scalable software-defined
caches,” in Proceedings of the 22nd International Conference on
Parallel Architectures and Compilation Techniques, 2013, pp.
213-224.

T. Bourgeat, J. Drean, Y. Yang, L. Tsai, J. Emer, and M. Yan, “CaSA:
End-to-end Quantitative Security Analysis of Randomly Mapped
Caches,” in 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2020, pp. 1110-1123.

T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, and S. Devadas, “MI6:
Secure enclaves in a speculative out-of-order processor,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 42-56.

S. Briongos, P. Malagén, J. M. Moya, and T. Eisenbarth, “Reload+
refresh: Abusing cache replacement policies to perform stealthy cache
attacks,” in USENIX Security, 2020.

J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017:
Next-generation compute benchmark,” in Companion of the 2018
ACM/SPEC International Conference on Performance Engineering,
2018, pp. 41-42.

J. T. Butler and T. Sasao, “Fast hardware computation of x mod z,” in
2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum. 1EEE, 2011, pp. 294-297.

J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
Journal of computer and system sciences, vol. 18, no. 2, pp. 143-154,
1979.

J. Chen and G. Venkataramani, “CC-Hunter: Uncovering Covert
Timing Channels on Shared Processor Hardware,” in 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture,
2014.

M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of
cache-based side-channel attacks using hardware performance
counters,” Appl. Soft Comput., 2016.

G. Dessouky, T. Frassetto, and A.-R. Sadeghi, “HybCache: Hybrid
Side-Channel-Resilient Caches for Trusted Execution Environments,”
in 29th USENIX Security Symposium (USENIX Security 20), 2020.

C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, “Prime+
abort: A timer-free high-precision L3 cache attack using Intel TSX,”
in 26th USENIX Security Symposium (USENIX Security 17), 2017.

L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and

D. Ponomarev, “Non-monopolizable Caches: Low-complexity
Mitigation of Cache Side Channel Attacks,” ACM Trans. Archit. Code
Optim., vol. 8, no. 4, Jan. 2012.

N. El-Sayed, A. Mukkara, P.-A. Tsai, H. Kasture, X. Ma, and
D. Sanchez, “KPart: A hybrid cache partitioning-sharing technique for
commodity multicores,” in HPCA, 2018.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ Flush: a
fast and stealthy cache attack,” in DIMVA, 2016.

D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in 24th USENIX
Security Symposium (USENIX Security 15), 2015, pp. 897-912.

G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache
attacks,” in Proceedings of the 11th ACM on Asia conference on
computer and communications security, 2016.

A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High
performance cache replacement using re-reference interval prediction
(RRIP),” ACM SIGARCH Computer Architecture News, vol. 38, no. 3,
2010.

T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM:
System-level protection against cache-based side channel attacks in
the cloud,” in USENIX Security, 2012.

V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors,” in MICRO, 2018.

J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan,

[23

[24

[25

[26

27

[28

[29

[30

[31

[32

[33

[34

[35

[36

[37

[38

[39

[40

[41

[42

1

]

]

]

]

]

]

]

]

]

1

]

]

]

“Gaining insights into multicore cache partitioning: Bridging the gap
between simulation and real systems,” in 2008 IEEE 14th
International Symposium on High Performance Computer
Architecture. 1EEE, 2008, pp. 367-378.

F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “CATalyst: Defeating last-level cache side channel attacks in
cloud computing,” in HPCA 2016, 2016.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Security and Privacy (SP), 2015
IEEE Symposium on. 1EEE, 2015, pp. 605-622.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” ACM
SIGPLAN Notices, vol. 40, no. 6, pp. 190-200, 2005.

R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic Shared
Cache Management (PriSM),” in Proceedings of the 39th Annual
International Symposium on Computer Architecture, ser. ISCA *12,
2012, p. 428-439.

D. A. Osvik, A. Shamri, and E. Tromer, “Cache Attacks and
Countermeasures: The Case of AES,” in Proceedings of the 2006 The
Cryptographers’ Track at the RSA Conference on Topics in
Cryptology, ser. CT-RSA’06, 2006.

R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the Ring (s):
Side Channel Attacks on the CPU On-Chip Ring Interconnect Are
Practical,” arXiv preprint arXiv:2103.03443, 2021.

M. Payer, “HexPADS: A Platform to Detect “Stealth” Attacks,” in
Engineering Secure Software and Systems. Springer International
Publishing, 2016.

A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “Systematic
analysis of randomization-based protected cache architectures,” in
42th IEEE Symposium on Security and Privacy, vol. 5, 2020, p. 2021.

M. K. Qureshi, “CEASER: Mitigating Conflict-Based Cache Attacks
via Dynamically Encrypted Address,” in Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture,
2018.

M. K. Qureshi, “New attacks and defense for encrypted-address cache,”
in Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), 2019.

M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition
shared caches,” in 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06). 1EEE, 2006, pp. 423-432.

H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management
for isolation enhanced cloud services,” in Proceedings of the 2009
ACM Workshop on Cloud Computing Security, 2009, pp. 77-84.

C. Reis, A. Moshchuk, and N. Oskov, “Site Isolation: Process
Separation for Web Sites within the Browser,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019, pp. 1661-1678.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM Conference on Computer
and Communications Security, 2009, pp. 199-212.

G. Saileshwar, C. W. Fletcher, and M. Qureshi, “Streamline: a fast,
flushless cache covert-channel attack by enabling asynchronous
collusion,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2021, pp. 1077-1090.

G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating Conflict-Based
Cache Attacks with a Practical Fully-Associative Design,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021.

M. Schwarz, M. Lipp, and D. Gruss, “JavaScript Zero: Real JavaScript
and Zero Side-Channel Attacks,” in NDSS, 2018.

M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss,
“Netspectre: Read arbitrary memory over network,” in ESORICS,
2019.

B. C. Schwedock and N. Beckmann, “Jumanji: The Case for Dynamic
NUCA in the Datacenter,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).
2020, pp. 665-680.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically

IEEE,

[43]

[44]

[45]

[46]

[47]

[48]

characterizing large scale program behavior,” ACM SIGPLAN Notices,
vol. 37, no. 10, pp. 45-57, 2002.

J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-based
side-channel in multi-tenant cloud using dynamic page coloring,” in
2011 IEEE/IFIP 41st International Conference on Dependable
Systems and Networks Workshops (DSN-W), 2011, pp. 194-199.

A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren, and
Y. Yarom, “Prime+ Probe 1, JavaScript 0: Overcoming Browser-based
Side-Channel Defenses,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021.

A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 639-656.

W. Song, B. Li, Z. Xue, Z. Li, W. Wang, and P. Liu, “Randomized
Last-Level Caches Are Still Vulnerable to Cache Side-Channel
Attacks! But We Can Fix It,” in IEEE Symposium on Security and
Privacy (SP) 2021, 2021.

J. Wan, Y. Bi, Z. Zhou, and Z. Li, “Volcano: Stateless Cache
Side-channel Attack by Exploiting Mesh Interconnect,” arXiv preprint
arXiv:2103.04533, 2021.

Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“SecDCP: secure dynamic cache partitioning for efficient timing
channel protection,” in Design Automation Conference (DAC), 2016.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture, 2007, pp.
494-505.

Z. Wang and R. B. Lee, “A Novel Cache Architecture with Enhanced
Performance and Security,” in International Symposium on
Microarchitecture (MICRO), 2008.

M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “ScatterCache: Thwarting Cache Attacks via Cache Set
Randomization,” in USENIX Security, 2019.

W. Xiong and J. Szefer, “Leaking Information Through Cache LRU
States,” in HPCA, 2020.

M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure
hierarchy-aware cache replacement policy (SHARP): Defending
against cache-based side channel attacks,” in ISCA, 2017.

F. Yao, M. Doroslovacki, and G. Venkataramani, “Are Coherence
Protocol States Vulnerable to Information Leakage?” in HPCA, 2018.

Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack,” in USENIX Security,
2014.

Y. Ye, R. West, Z. Cheng, and Y. Li, “Coloris: A dynamic cache
partitioning system using page coloring,” in PACT, 2014.

