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Programs written in C/C++ are vulnerable to memory-safety errors like buffer-overflows and use-after-free.
While several mechanisms to detect such errors have been previously proposed, they suffer from a variety of
drawbacks, including poor performance, imprecise or probabilistic detection of errors, or requiring invasive
changes to the ISA, binary-layout, or source-code that results in compatibility issues. As a result, memory-
safety errors continue to be hard to detect and a principal cause of security problems.

In this work, we present a minimally invasive and low-cost hardware-based memory-safety checking
framework for detecting out-of-bounds accesses and use-after-free errors. The key idea of our mechanism is
to re-purpose some of the “unused bits” in a pointer in 64-bit architectures to store an index into a bounds
information table that can be used to catch out-bounds errors and use-after-free errors without any change
to the binary layout. Using this memory-safety checking framework, we enable HeapCheck, a design for de-
tecting Out-of-bounds and Use-after-free accesses for heap-objects, that are responsible for the majority of
memory-safety errors in the wild. Our evaluations using C/C++ SPEC CPU 2017 workloads on Gem5 show
that our solution incurs 1.5% slowdown on average, using an 8 KB on-chip SRAM cache for caching bounds-
information. Our mechanism allows detection of out-of-bounds errors in user-code as well as in unmodified
shared-library functions. Our mechanism has detected out-of-bounds accesses in 87 lines of code in the SPEC
CPU 2017 benchmarks, primarily in Glibc v2.27 functions, that, to our knowledge, have not been previously
detected even with popular tools like Address Sanitizer.
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1 INTRODUCTION

Applications written in memory-unsafe languages like C/C++ are vulnerable to memory-safety
errors like buffer overflows, use-after-free, and others. Such errors have been exploited in numer-
ous attacks in the past [44], including high-profile attacks, such as the Morris worm [30] and
Heartbleed [1], and are ranked by MITRE [2] to be some of the most dangerous software bugs.
As shown in Figure 1, a recent study [22] by Microsoft revealed that such errors continue to be
the root cause of approximately 70% of the CVEs identified in their production software; in par-
ticular, the errors specific to heap objects, including heap corruption, out-of-bounds accesses, and
use-after-free, caused almost 50% of the CVEs in 2019.

In recent years, numerous software tools such as ASAN [37], Valgrind [27], Dr Memory [6],
and so on, have been proposed to detect memory-safety errors without invasive changes to the
source code or compatibility issues. However, such software-only solutions incur prohibitive per-
formance overheads (e.g., ASAN slows down execution by 2–3×), which has limited their use
case to debugging and testing purposes at development time. As a result, any bugs that escape
into real-world software continue to cause security vulnerabilities. However, if memory-safety
solutions can detect bugs with low overhead, then they can be enabled even in production envi-
ronments where performance is critical, to detect and prevent such bugs at runtime. For example,
Google recently announced Android support [38] for ARM’s Memory Tagging [4] feature, which
provides probabilistic detection of bugs at negligible performance overheads, with the goal of en-
abling in-production detection of bugs [39]. However, MTE and several recent hardware-based
solutions [4, 29, 35, 42] providing probabilistic detection of bugs trade off detection capability for
performance and only detect some bugs while missing others.

More principled bounds-checking-based solutions in hardware [9, 18, 23, 28, 47, 48] have also
been proposed that enforce object bounds and detect memory-safety errors with high coverage.
However, even the state-of-the-art HW-based bounds-checking solutions such as Chex86 [40] and
AOS [18] continue to incur slowdown of 8–15% that may limit their adoption in production en-
vironments. Additionally, solutions like AOS rely on new ISA instructions for capturing bounds
information when objects are created, thus requiring source code rewrite or recompilation, result-
ing in incomplete security for legacy code.

Ideally, we seek a solution capable of precise detection of memory-safety bugs with near-0%
slowdown to enable adoption at software run time and without invasive ISA changes (no applica-
tion changes) to ensure security for even legacy code. This can enable always-on memory safety
in production software where performance is critical. Such a performant memory-safety bug de-
tector in hardware can also accelerate software testing solutions like sanitizers and fuzzers [16],
which holds the promise of effectively increasing the coverage of such software testing solutions.
To that end, this article presents a HW-based bounds-checking framework optimized for negligible
slowdown, negligible ISA changes, and no changes to application source code or binary layouts.

The crux of our solution is re-purposing architecturally visible “unused bits” in a pointer (mod-
ern 64-bit architectures have pointers typically storing virtual addresses with 48-bits of informa-
tion or less) to store an index to a bounds-metadata table, which tracks the range of addresses
legitimately accessible via the pointer. As shown in Figure 2, our framework (a) allocates an
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Fig. 1. Data on the root cause of CVEs from a recent study [22] by Microsoft shows memory-safety errors

(all non-grey colors above) cause >70% of the CVEs, with errors like Heap Corruption, Heap OOB Reads, and

Use-after-free (in blue color above) found in almost 50% of the CVEs.

Fig. 2. HeapCheck detects spatial and temporal safety errors for heap objects by reusing the top bits of object

pointers to store an index to a table containing bounds metadata. On pointer accesses, hardware performs

bounds-checking by accessing the bounds metadata using the index bits in pointer.

entry in a per-process bounds-table to store the bounds-information when an object is allocated;
(b) re-purposes the unused top bits of the object pointer to store the index to the bounds-table
entry; (c) automatically propagates the index when subsequent addresses are derived via assign-
ment statements or pointer arithmetic; and (d) executes bounds-checking in hardware on load and
store instructions by using the index bits in an address to access the bounds metadata. We use this
framework to design HeapCheck, a spatial and temporal safety solution for heap objects capable
of detecting errors like heap out-of-bounds reads and writes, and use-after-free. We focus on heap
errors primarily as they make up almost 50% of patched CVEs by Microsoft [22] and almost 60%
of the memory-safety bugs detected by Google’s OSS-Fuzz [36]; however, our framework can also
be extended to detect errors for stack and global objects using the same principles with additional
compiler support.

To ensure the slowdown for our solution is negligible, we make several key design choices for
our bounds metadata. First, our bounds metadata is associated per object (and not per memory-
word unlike prior shadow-memory-based solutions like Hardbound [9] or Watchdog[23]), which
allows all pointers associated with a given buffer to have the same index, and thus the bounds table
accesses for different words of a single object enjoy excellent temporal locality. Second, our flat lin-
ear bounds-table design enables fast access with a single lookup unlike prior approaches requiring
expensive multi-level table-accesses [18, 28, 40]. Additionally, the linear bounds table encourages
excellent spatial locality as nearby objects also have their bounds-table entries close to each other
(within the same cache line), unlike comparable works like AOS [18] using hashed bounds-table
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designs that lose such locality and incur slowdown.1 These design choices make it highly likely for
the bounds information of a pointer to be available in an on-chip Bounds-information (BI) cache:
our simulations show a greater than 98% hit-rate for bounds-table accesses in a fast 8 KB on-chip
BICache. Thus, bounds-checking for a majority of the loads or stores can be done without added de-
lays of accessing the memory for obtaining bounds. Finally, our bounds-table index is propagated
“automatically” via program semantics on pointer assignments, or pointer arithmetic during array
indexing, or when a pointer is passed to a function, without any extra overhead (as all pointer
arithmetic is 64-bits, the top bits flow automatically), unlike prior solutions that require extra in-
structions [3, 10, 24, 50], or extra micro ops and table lookups to propagate pointer metadata like
in the recent Chex86 [40].

With all these optimizations combined, our scheme achieves an average slowdown of 1.5%
across SPEC-2017 benchmarks, which is more than 5× lower than the prior best bounds-checking
solution [18]. While the rich body of previous works in this space have admittedly also used
similar ideas like reusing pointer bits for metadata [10, 18] and storing bounds in shadow re-
gions [9, 18, 23, 40], to our knowledge, no prior work has achieved the trifecta of near-zero slow-
down, exact bounds enforcement, and seamless backward compatibility, unlike our work.

Our solution also ensures seamless compatibility with legacy code by avoiding changes to the
application source code or binary layout, unlike prior works on hardware-based memory safety [18,
23, 47]. Our software instrumentation responsible for bounds table management is packaged as a
shared library that just needs to be linked to existing source code. The software instrumentation
intercepts calls to memory allocator functions and allocates bounds-table entries on mallocs, and
invalidates entries on frees. On pointer dereference, the index of a bounds-table entry in the top
bits of an object pointer is transparently used to access the bounds-table in hardware and execute
the bounds-check, to flag out-of-bounds accesses and detect use-after-free errors after an object is
freed (as the index in a dangling pointer points to an invalid bounds-table entry).

Overall, this work makes the following contributions:

(1) We propose a low cost, minimally invasive bounds-checking framework by reusing the top
bits of an address for bounds-checking metadata.

(2) We implement HeapCheck, our bounds-checking framework for heap objects using LLVM
instrumentation to intercept malloc/free calls in programs and a shared library for tracking
bounds, ensuring no application code change is needed for backwards compatibility.

(3) We model our bounds-checking hardware in Gem5 and show our solution has an overall
slowdown of 1.5% average, based on evaluations of C/C++ SPEC-CPU2017 benchmarks, us-
ing an 8 KB on-chip cache for bounds-metadata.

(4) We demonstrate that our solution precisely detects errors like heap out-of-bounds reads and
writes, use-after-free, invalid-free, and double-free, and we show it detects 25 of 25 heap ex-
ploits from the How2Heap exploit suite [41].

(5) We also show our framework can detect memory-safety errors when pointers are passed to
unmodified shared libraries, that tools like ASAN [37] cannot. Our solution identified out-
of-bounds references in 87 lines of code in SPEC-CPU2017 programs, mainly in Glibc-v2.27
functions where aggressively optimized SIMD instructions access out-of-bounds memory;
to our knowledge, these have not been detected in prior work.

1AOS [18] uses pointer bits to store keys to a hash table with bounds metadata and uses ARM’s Pointer-Authentication
ISA extensions (which is not compatible with legacy code) to generate random hash-table keys; the random hash-table
accesses are often without spatial locality in the caches, resulting in higher average slowdown of 8.4% and >100% in worst
case (versus 1.5% on average and 6% in worst case for our work). We discuss this in Section 6.1.
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2 BACKGROUND AND MOTIVATION

We first discuss the problem of memory safety, and then we describe prior solutions and their
limitations to motivate our work.

2.1 Problem: Spatial and Temporal Safety

Applications written in C/C++, where pointer manipulation is permissible without safety checks,
are prone to memory errors where pointers dereference invalid memory regions. A spatial error

(out-of-bounds access) can arise from pointer arithmetic using unvalidated inputs that causes a
buffer pointer to access memory beyond the buffer bounds. Similarly, a temporal error (e.g., use-
after-free) can result from a read or write using a dangling pointer (a pointer to a freed object
whose memory has been subsequently reused). Memory leakage and corruption due to such er-
rors has been exploited by attacks that break data confidentiality [1], attempt privilege escala-
tion [34], break system integrity [12], and so on. While existing software testing mechanisms use
sanitizers [43] and fuzzing [45] to detect memory-safety errors, such mechanisms are primarily
software-based and impose large slowdown, thus limiting their applicability. Thus, improving the
speed of memory-safety error detection (with hardware support) can considerably improve soft-
ware reliability and security.

2.1.1 Threat Model. Our threat model focuses on attacks on victim applications that contain
memory-safety bugs, which may be exploited by an adversary passing unchecked data inputs to the
victim code (e.g., Heartbleed [1]). The adversary itself is unprivileged and does not have arbitrary
code execution capability or arbitrary memory read/write capability in the address space of the
victim process. We assume the victim code itself is non-malicious and the adversary can only try
to exploit bugs in the victim code by passing malicious inputs to it. In this work, we focus on
memory-safety bugs (both spatial and temporal) in heap objects, but the solutions we develop
are generally applicable to stack or global regions as well. Note that the focus of our solution is
mainly on architecturally visible out-of-bounds accesses, and we leave speculative out-of-bounds
accesses (like Spectre-v1) out of scope like several prior memory-safety solutions. This is because
transient-execution attacks constitute a broader set of vulnerabilities than just Spectre-v1, which
bounds-checking might possibly address, and holistic solutions for safe speculation [20, 51] also
mitigate Spectre-v1. Hence, we keep Spectre-v1 out of focus for this work by default; but we discuss
the implication of our solution on Spectre v1 in Section 5.4.

2.2 Hardware Solutions for Detecting Memory-safety Errors

2.2.1 Probabilistic Solutions. Such solutions either use trip wires or tagged-memory to proba-
bilistically detect memory accesses that cross object-bounds. Trip-wire-based solutions (such as
REST [42] and Caliform [35]) insert red-zones or trip-wires around objects to detect common
spatial bugs that go beyond object-bounds by a small amount. However, hardware-based memory-
tagging solutions like ARM’s MTE [4] and SPARCS’s SSM [29] proposed assigning random 4-bit
tags or “colors” to object-pointer pairs, in an attempt to probabilistically detect bugs based on
“color” mismatch. While such solutions are easy to adopt due to minimal slowdown or compatibil-
ity issues, they are unable to provide complete coverage for error-detection, by design.

2.2.2 Bounds-checking-based Solutions. Such solutions provide precise enforcement of safe pro-
gram behavior by tracking the object base and bounds and enforcing bounds-checks on all object
accesses. These approaches can be grouped based on the location of their bounds metadata, as
shown in Figure 3.
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Fig. 3. Categories of bounds-checking-based solutions used for detecting memory-safety errors.

Adjacent Bounds: Fat-pointer solutions [17, 26], shown in Figure 3(a), store the base and
bounds metadata in separate words alongside the actual pointer value, allowing execution of a
bounds-check to detect spatial errors when the actual pointer is dereferenced. CHERI [47] imple-
ments such a design with hardware-based bounds-checking, replacing pointers with 256-bit “capa-
bilities” that include the address, bounds, permission bits and other metadata needed for fine-grain
compartmentalization and bounds-checking; subsequent works proposed a compressed encoding
scheme [46] to reduce capability size to 128-bits and a capability revocation mechanism [48] for
temporal safety. Unfortunately, such solutions require invasive changes to the ISA, source code
and the binary layout impacting compatibility with legacy code.

Inline Bounds: Low-fat Pointer solutions [10, 11, 19], shown in Figure 3(b), encode the object
bounds inline within the pointer without impacting binary layout. Kwon et al. [19] use a compact
floating-point format to store (the least significant bits of) the object base and bounds addresses in
the top 18 bits of a 64-bit pointer. Other works [10, 11] allocate objects in size-specific partitions
of memory at a size aligned base-address, to implicitly encode the base and bounds in the pointer
value. These works track pointer arithmetic (either in hardware [19] or via explicit instructions [10,
11]) to ensure the pointer never crosses the inline bounds. Unfortunately, such solutions do not
provide temporal safety, as the checks using the bounds within a dangling pointer continue to
pass, even after the memory it references has been freed.

Disjoint Bounds: Other solutions store bounds metadata in a disjoint table in shadow memory

to avoid changing the binary layout, as shown in Figure 3(c). The bounds-table is typically indexed
using the pointer-value, as a linear table lookup [9, 23] or using a multi-level trie lookup [28, 40].
Spatial errors are detected by executing a bounds-check with a table-lookup in hardware on
pointer dereferences. The resulting overheads are lower than comparable software-based solu-
tions [3, 24, 25, 50] as bounds are propagated and checked using micro-code or dedicated hard-
ware. However, such solutions continue to incur moderate to high slowdown due to expensive
table lookups using the pointer value, to access the bounds metadata. Hardbound [9] stores the
bounds metadata in shadow memory and requires a shadow memory access for a bounds-check
on each regular memory access. However, this design only provides spatial safety. Watchdog [23]
extends this to provide spatial and temporal safety, by storing unique identifiers for pointers that
are only valid for object lifetime, along with bounds metadata, and incurs a higher slowdown of
24%. Intel’s MPX [28] requires a two-level table lookup to obtain the bounds metadata, incurring
a much higher slowdown of 50% on average. Recently, Chex86 [40] proposed spatial and temporal
safety by associating pointers with capabilities (containing bounds metadata) stored in a separate
table, that is accessed based on an identifier (capability-ID). Unfortunately, this adds another layer
of indirection for a bounds-check, requiring in the worst-case, a five-level table lookup to identify
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Fig. 4. Overview of HeapCheck. (a) Life-cycle of a heap-object pointer, and associated operations with

bounds-information entry (BIEntry) in the bounds-table (BITable) to enforce memory safety. (b) Changes

in SW and HW made to enable HeapCheck.

the capability-ID for a pointer, and then a lookup to retrieve the capability itself, resulting in a
worst-case slowdown of 40%.

2.3 Goal and Insight

Our goal is to enable a hardware-based bounds-checker that can precisely detect spatial errors,
and also efficiently invalidate bounds for dangling pointers to detect temporal errors. For practical
adoption, we would like our mechanism to have negligible performance overheads, not require
adding any new instructions to the ISA, and avoid any changes to the application source code or the
binary layout. To that end, we adopt a configuration shown in Figure 3(d), that associates a pointer
with a unique inline identifier, which is used to index into a disjoint bounds-table. While such a
configuration was recently used [18] to provide memory safety, we observe there is significant
room to reduce overheads and improve compatibility. We describe our solution next.

3 DESIGN

We first provide an overview of our solution HeapCheck, and then describe the software and hard-
ware components that enable our solution.

3.1 Overview of Bounds-checking with HeapCheck

High-level Idea: The main principle of HeapCheck is to store the bounds metadata of an object
throughout its lifetime in a per process bounds-information table (BITable), within the pro-
gram’s virtual address space, and perform hardware-based bounds-checks on all object accesses
at runtime. Figure 4(a) shows the life-cycle of a pointer during program runtime. When an ob-
ject is created, a bounds-information entry (BIEntry) is created in the BITable to store its
base-address and the size, and the index of the corresponding entry of the BITable is embedded
within the top bits of the pointer.2 When the pointer is dereferenced, the hardware uses the index
within the top bits to access the corresponding BIEntry and perform a bounds-check to detect
out-of-bounds accesses. When an object is freed, its BIEntry is invalidated, allowing detection of
temporal errors if dangling pointers to such freed objects are used subsequently.

Implementation: The organization of our implementation is shown in Figure 4(b). The soft-
ware manages the BITable: we use hooks for malloc and free functions to intercept calls to these
functions, and perform associated BITable operations such as allocation and invalidation of BIEn-
tries. We define these hooks in a shared library that can be added by the linker during program

2Our design does not require the index bits to be contiguous or be the top bits of the pointer. However, for simplicity of
implementation, we reserved the top 24-bits for index bits.
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Fig. 5. Design of the Bounds-information Table (BITable).

compilation, without requiring any changes to the source code and without any compatibility is-
sues due to changes to the binary layout. The hardware, on which this binary runs, transparently
executes the bounds-checks for every load or store to detect memory-safety violations: we mod-
ify the load and store execution in hardware to additionally also access the BITable and obtain the
bounds metadata for the bounds-check; we add a bounds-information cache (BICache) to limit
the slowdown from accesses to the BITable in memory.

3.2 Software Support to Enable the Bounds-table

The BITable is maintained within a program’s virtual address space and stores the bounds metadata
for each heap object in the program. It is accessed on each load or store to a heap object to execute
the bounds-check. We describe the design and implementation of the BITable below.

BITable Design. The BITable is organized as a linear table of 16-byte BIEntries, with each BIEntry
containing a 64-bit base-address and a 64-bit object-size, as shown in Figure 5 (a more optimized
design could accommodate a BIEntry in 12-bytes by storing 48-bit base and size fields). Each BI-
Entry is associated with a heap object; accessing the BIEntry corresponding to an object requires
a single table-lookup (BITable[index]), using the index that is embedded into the pointer during
object allocation, unlike prior works [28, 40] that access bounds metadata with multi-level table
lookup using the pointer value itself.

BITable Implementation. The space for the BITable is reserved using an mmap at program initial-
ization, with the MAP_ANONYMOUS flag, that results in physical pages being allocated lazily on access.
Hence, the memory consumed by the BITable grows proportional to the number of malloced ob-
jects in the program. The virtual address of the base of the BITable and its size are stored in custom
MSRs, i.e., model-specific registers (BTBASE, BTSIZE) in hardware that can be written to or read
from using wrmsr and rdmsr instructions respectively; the OS saves and restores these registers
on context switches (the BITable of multiple processes can co-exist in DRAM and does not need
to be swapped out on context-switches). This allows the hardware to calculate the virtual address
of a BIEntry as BTBASE | (index << 4) while executing the bounds-check; to ensure such a con-
catenation of base and index is possible, the mmap ensures the base of the BITable is aligned to a
power-of-2 larger than the table-size, so that the BTBASE lower bits are 0s.

The BITable needs to be at least as large as the maximum number of live objects in the program
(objects that are malloced but not yet freed). We observe that the SPEC CPU2017 workloads with
the ref data-set have a maximum of 2.4M live objects in any program (despite hundreds of mil-
lions of objects being malloced/freed throughout the benchmark lifetime). With an abundance of
caution, we set the BITable size to be 16M entries to support up to 16M live objects (malloced but
not yet freed) at any point in time. We discuss how an even higher number of live objects can be
supported in Section 3.4.
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Listing 1. malloc_hook.

. . / / g e t a f r e e B I E n t r y

/ / i n d e x : t h e new e n t r y

p = r e a l _ m a l l o c ( s i z e ) ;
w r i t e B I E n t r y ( index , p , s i z e ) ;
return ( p | ( index << 4 0 ) ;

}

Listing 2. free_hook.

/ / p : p t r p a s s e d t o f r e e

i ndex = p >> 4 0 ;
p = p & 0 xFFFFFFFFFF ;
r e a d B I E n t r y ( index , p ) ;
. . / / c h e c k p matche s B I E n t r y

w r i t e B I E n t r y ( index , 0 , 0 ) ;
. . / / add i n d e x t o f r e e l i s t

r e a l _ f r e e ( p ) ;
}

BIEntry Allocation and Invalidation. We use LLVM-based instrumentation to initialize our
malloc/free hooks, before main is executed. These hooks intercept subsequent calls to malloc
and free from the program, where we create or delete the BIEntry and then call the internal
memory allocation functions (real_malloc and real_free). We implement writeBIEntry and
readBIEntry functions, responsible for writing a new entry in the BITable and reading an entry,
respectively, using array accesses, as inline functions in our shared library.

Listings 1, 2 show the HeapCheck function hooks called on malloc/free. When a malloc is
intercepted, we call the real_malloc, and store the returned base-address and the requested object-
size in a BIEntry using writeBIEntry. For the first 16M mallocs, we use a new BIEntry in the
table, or one of the entries invalidated on a free in FIFO order. The index of this BIEntry is then
embedded in the top 24 bits of the pointer and returned to the program. When a free is intercepted,
the index in the top bits of the pointer is used to get the BIEntry using readBIEntry and verify
that the pointer value matches the object base. Then, the BIEntry is invalidated (base and size set
to 0), and the real_free is called to free the object.

Program Memory Layout. Our scheme uses the top 24-bits of a pointer to store the index of
a BIEntry. On 64-bit Linux systems with a four-level page-table, programs typically use a 48-bit
user VA-space. Since our index bits overlap with the top 8-bits of a 48-bit user address, we need
to constrain our program memory layout as shown in Figure 6, to avoid collisions of program
addresses with heap object pointers containing the 24-bit index. In this layout, the heap grows
upwards from 0x0 to 0xFFFFFFFFFF and the top 24-bits of a heap pointer (which are 0x000000
by default) can be used by the BITable index. To identify stack/global addresses, we ensure they
have “0x00007F” in the top 24 bits (we keep the BITable index 0x7F unused), and hence the stack
grows downwards from 0x7FFFFFFFFFFF to 0x7F0000000000. Thus, the stack/global region is
limited to a 40-bit space (1 TB) and combined with a 1 TB heap, this limits the total VA space to
2 TB.3 To support this program layout, we skip the usage of index value 0x7F for heap objects to
avoid collision with stack addresses and also the index values from 0xFFFF80 – 0xFFFFFF to avoid

3The amount of VA space is configurable. For example, a program can have 8 TB VA space while using a flat bounds-table
with 4M entries, which is sufficient for SPEC-CPU2017 applications (we use a bounds-table with 16M entries by default
to keep some buffer). The VA space per program can be even further increased with a two-level bounds-table design: a
smaller flat table and an overflow table, as discussed in Section 3.4.
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Fig. 6. Layout of a program’s 64-bit Virtual-Address Space.

Fig. 7. (a) Hardware for HeapCheck includes a dedicated BICache for caching BITable entries, that is ac-

cessed for Bounds-check in parallel to L1-Dcache on Loads/Stores. (b) Assuming TLB-Hit for Data Access

and Bounds-check, slowdown is incurred only if Bounds-check has a BICache Miss and the check is pending

by the time the load/store instruction reaches commit stage.

collision with kernel addresses. The index 0x0 is reserved for the NULL pointer (pointer value “0”)
to support free called on NULL pointer (that is valid program behavior [5]).

3.3 Hardware-based Bounds-checks

HeapCheck detects out-of-bounds accesses and use-after-free references via bounds-checks per-
formed transparently by the hardware on loads and stores. We describe the design and implemen-
tation of bounds-checks below.

Design of Bounds-checks. In HeapCheck, all loads and stores to heap objects (identified by the
presence of an index in the top 24-bits) have a bounds-check included as a part of the load/store
execution. The bounds-check involves using the index to lookup the corresponding BITable entry,
obtaining the base and size of the object, and asserting that the access is within [base,base + size];
else, an out-of-bounds exception is triggered. If the BIEntry base and size are 0, then a use-after-free
exception is raised. If the BIEntry has been reused, then a dangling pointer access is still detected
due to mismatch in bounds with a high probability, but flagged as an out-of-bounds exception.

Implementation of the Bounds-checks. For the bounds-check, the address of the BIEntry for
the bounds-check is calculated using the BITableBase register and index bits from the load/store
address as BTBASE | (Index << 4), and the address translation is identical to a regular load.
The execution of the bounds-check begins when the virtual address of a load/store is ready, and
continues in parallel to the load/store execution without impacting its execution. The bounds-
check is only on the critical path of load/store commit stage, which commits a load/store only if
the check passes; else it stalls until the bounds-check completes. The bounds-check itself requires
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simple logic: OR and Left-shift to calculate BITable-Address, in addition to a 48-bit Adder and a
Comparator for the bounds-check (the adder can be avoided if the bounds metadata stores the end
address of the object instead of the object size); this requires less than a few thousand logic gates
of extra hardware.

Design of BICache. To minimize performance impact, we cache BITable entries in a dedicated
BIcache, as shown in Figure 7, so that bounds-checks that hit in the BIcache have no impact on
load/store latency. Our design uses a dedicated 8 KB eight-way BICache for the BITable entries. All
accesses to the BITable generated in hardware for bounds-checks are routed through the BICache;
similarly all loads and stores to the BITable generated from software for BITable management
on malloc and free are routed through the BICache by the hardware (knowing the range of the
BITable programmed in the MSRs). The design of the BICache is Virtually Indexed Physically
Tagged (VIPT) and identical to the L1-Dcache with the same latency (but much smaller in size), to
ensure that load/store execution perceives no performance impact if the bounds-check gets a hit
in the BICache. On a miss, the entries can be accessed from the L2, Last-level cache, or the main
memory as applicable; for ease of implementation in our simulated design, we directly service
BICache misses from the main-memory. We extend the load/store queue entries to store the status
of pending bounds-checks (storing a 48-bit BIEntry address, a 1-bit checkIssued flag, and a 1-bit
checkComplete flag), in case a BICache miss delays the bounds-check.

3.4 Discussion

Scaling to Larger Number of BIEntries: To enable fast access to bounds metadata, we choose
a flat-table-based design for the BITable supporting 4–16M entries using 22 to 24 top bits of a
pointer as index bits; this restricts a program to 2–8 TB of VA space. However, it is also possible
to support programs needing a larger number of BIEntries or systems where fewer pointer bits
may be used as index, using a two level BITable design. Such a design would have (a) a flat BITable
indexed by the top bits of the pointer, storing the bounds for as many object bounds as possible,
and (b) a slower overflow table indexed by the pointer value like prior designs like Chex86 [40] or
Intel’s MPX [28], storing the bounds for the remaining objects. Workloads with fewer heap objects
could exclusively use the flat BITable and have no performance degradation (e.g., almost half of
the SPEC-CPU2017 workloads have less than 64K active objects at any time). As the number of
active objects in a program increases beyond the capacity of the flat table, the performance would
degrade gracefully, with the worst-case slowdown being no worse than prior designs. For all of the
SPEC CPU2017 workloads, a single 4M entry BITable (using 22 top bits of the pointer as index) was
sufficient for the bounds of all objects (<2.5M entries were used at the maximum) and an overflow
table was not required. For workloads requiring a larger number of BIEntries, future work can
explore hybrid bounds-table designs using fewer pointer bits as index.

Compatibility with Multi-Threading: Our malloc and free hook functions can be imple-
mented in a thread-safe manner by using locks to ensure atomic updates to the BITable. Addi-
tionally, the coherence between the BICaches (having a VIPT design) across different cores is
maintained using the existing cache-coherence fabric in hardware. The updates to the BITable
from one core are reflected in accesses from other cores, without any extra software intervention.
As long as the program itself is written in a thread-safe manner (e.g., no data race between a free
and an access to the same object from different threads), and the internal memory allocator itself is
thread-safe, our bounds-checking framework retains compatibility with multi-threaded programs.

4 ANALYSIS OF BUG DETECTION WITH HEAPCHECK

In this section, we first discuss the types of memory-safety bugs HeapCheck is able to detect, and
then we discuss new out-of-bounds references we detected using HeapCheck.
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4.1 Types of Memory-safety Bugs Detected

We tested HeapCheck with 25 programs from the How2Heap [41] exploit suite containing heap spa-
tial and temporal safety bugs like out-of-bounds accesses, use-after-free, invalid-free, and double-
free. HeapCheck detected the bugs in all 25 of these programs. Of these, we detected an Out-of-
bounds access in eight exploits, Use-after-free in ten exploits, and Invalid/Double-Free in seven
exploits.

The mechanism of detecting each of these classes of bugs is as follows:

• Out-of-bounds Accesses: On loads and stores, the bounds-check, performed in parallel
to the load/store, checks the BIEntry and ensures the access is within object bounds. This
allows HeapCheck to detect any out-of-bounds accesses before they occur.

• Use-after-free: If the bounds-check on a load/store finds the BIEntry to have base=0 and
size=0, then the object was either recently freed or the BIEntry was uninitialized (object was
never malloced). We flag both scenarios as errors. If the BIEntry is re-allocated between a
Free and a Use-after-free, then the Use-after-free is detected as an out-of-bounds access with
a very high probability, as the chance of the index being reused for an object overlapping in
virtual memory with the freed object is quite low.

• Double-free and Invalid-free: On a free, it is verified that the pointer-to-be-freed matches
the object-base in the BIEntry. If a mismatch is detected, it is indicative of an invalid or a
double-free bug. If the index in the top-bits of the pointer is not a valid value, or if the BIEntry
object-base does not match, then an invalid-free bug is flagged; else, if the BIEntry base and
size are 0, then a double-free bug is flagged.

4.2 Out-of-bounds References in Glibc and SPEC-CPU2017

We modeled HeapCheck bounds-checks in Gem5 and tested it with 13 C/C++ SPEC-CPU2017 bina-
ries compiled using clang-11 and Glibc-v2.27. HeapCheck detected out-of-bounds reads in several
SPEC benchmarks when pointer-accesses were checked against the allocation-bounds of an object
(the 16-Byte aligned size allocated by malloc is stored in the BIEntry); note that our framework also
supports byte-granularity bounds-enforcement by storing object-size requested by the program in
the BIEntry instead of allocated-size.

Figure 8 shows the functions where we observe out-of-bounds accesses across 13 SPEC C/C++
binaries run for 11 billion instructions on Gem5 simulator with our HeapCheck framework. Over-
all, we observed out-of-bounds reads in 87 lines of code—80 of these were in highly optimized
Glibc-v2.27 functions used for string handling (including strlen, strchr, strcmp, etc.) and 7 lines of
code in four user-functions of blender program. The maximum number of bytes by which these
accesses go out-of-bounds is 62 bytes for the Glibc functions and only 4 bytes for the functions in
blender.

All of these out-of-bounds references were observed to be due to SIMD instructions that load
data from the memory to a SIMD register. Figure 9 shows the instructions for which we observe
out-of-bounds accesses. The instructions in the Glibc string handling functions include SIMD move
(MOVDQA, MOVDQU, MOVHPD, MOVLPD) or compare (PCMPEQB) or minimum (PMINUP) instructions, while
those in blender included SIMD arithmetic instructions (MUSS, ADSS, SUBSS). On inspection, the out-
of-bounds references in blender occurred when the compiler used unaligned 16-byte SIMD loads
to access memory at the boundary of an object resulting in partially out-of-bounds accesses, when
compiled with the O3 flag; these disappeared on using the O0 flag as SIMD arithmetic was not
used. The out-of-bounds references in Glibc functions appear to be more serious as they were
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Fig. 8. Functions in SPEC-CPU2017 programs where Out-of-bounds accesses were detected with

HeapCheck. Such accesses were observed either in heavily optimized Glibc functions or in functions of the

blender program.

Fig. 9. Instructions in SPEC-CPU2017 applications that caused Out-of-bounds accesses. All such out-of-

bounds references are due to SIMD instructions in optimized Glibc functions or SIMD instructions inserted

by the compiler when O3 flag is used.

in the shared-library (libc.a) distributed with Ubuntu 18.04, and as they access memory that is
out-of-bounds by up to 62 bytes.

We manually inspected strlen, the function with the maximum number of lines of code (20) that
have out-of-bounds accesses: a majority of these (11 of 20) are due to the instruction PCMPEQB,
which performs byte-wise comparison of 16 B memory and register operands. strlen uses these
instructions to perform fast checks for the “\0” (null) character in an input string, to compute
the string length. Listing 3 shows the assembly code for strlen generated from the object dump
of libc.a in Glibc v2.27. The code aggressively issues three 16-byte comparisons (up to four in
other code sequences) before using a test and a jump instruction to stop the comparison on a null,
which can end up accessing memory up to 47-bytes outside of a string object (up to 63-bytes out-
of-bounds with four 16-byte comparisons). This behavior has been acknowledged by one of the
authors of the strlen routine in a Stack Overflow post [7], but so far it is assumed to not result in any
vulnerability as the illegally referenced data on out-of-bounds reads is not explicitly used by subse-
quent instructions. However, such behavior of installing illegally obtained data in registers is quite
risky as such illegal data are accessible speculatively and can be leaked out via transient-execution
attacks like Spectre v2. Future works could demonstrate proof-of-concept attacks leveraging these
security weaknesses.

We also checked if the default version of Address Sanitizer (ASAN) [37] is able to detect
these out-of-bound references by running these binaries with ASAN. However, ASAN is unable to
detect such out-of-bounds accesses in shared library code like Glibc by default, as it requires shared
libraries to be recompiled to detect any out-of-bounds accesses in them unlike our work, which
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detects these without any additional requirements; also ASAN by default cannot detect unaligned
loads accessing out-of-bounds memory [32] that we detect in blender with HeapCheck.

Listing 3. Disassembly of __strlen_sse2 from libc.a.

0 x3e : pcmpeqb 0 x10 (% rax ) ,%xmm1 //16-byte compare
0 x43 : pcmpeqb 0 x20 (% rax ) ,%xmm2 //16-byte compare
0 x48 : pcmpeqb 0 x30 (% rax ) ,%xmm3 //16-byte compare
0 x4d : pmovmskb %xmm1,% edx //16-bit result in edx
0 x51 : pmovmskb %xmm2,% r8d //16-bit result in rd8
0 x56 : pmovmskb %xmm3,% ecx //16-bit result in ecx
. . .
// code -block assembles 48-bit result in rdx
. .
0 x79 : t e s t %rdx ,% rdx // checks if '\0' found
0 x7c : j e 100 < _ _ s t r l e n _ s s e 2 +0 x100 > //jump

4.3 Protection of Bounds Metadata from Adversarial Tampering

Our assumption is that the victim program with the memory-safety bugs is itself not malicious
and the adversary only interacts with the victim program via malicious data inputs to exploit the
memory-safety bugs (a classic example of such a setting being the Heartbleed vulnerability). So
the adversary does not have the ability to perform arbitrary read or write accesses nor the ability
to execute arbitrary code in the victim’s address space. So the bounds metadata in the victim code
is safe from direct reads or tampering by an adversary.

As a defense in depth strategy, below we describe extensions to further fortify the HeapCheck
metadata in the victim from corruption by any unknown means. The two types of metadata used
by HeapCheck, are the BIEntry in the BITable containing the bounds metadata, and the index bits
in the pointer used to access the bounds.

Protecting the BITable: To further protect the BITable, the BITable itself can be sandboxed within
the victim address space to prevent spurious reads or writes from code outside the trustworthy
HeapCheck library code. This can be achieved by having the HeapCheck library code use the
mprotect syscall to set/reset the read and write permission bits (in the page table) of the BIEntry
page before/after the BIEntry update on mallocs and frees. This ensures that the read and write
permissions for the BITable are always set to false outside the trustworthy library code and any
spurious access from software to the region causes an exception. Similar sandboxing can also
be achieved using Intel’s Memory Protection Keys (MPK) [31] with negligible overhead (as it
changes permissions without relying on modifying the page table). Accesses to the BITable for
bounds-checking, which are inserted within the hardware automatically on data loads/stores, can
continue unhindered by safely ignoring these permission bits.

Protecting the Pointer Index-bits: While an adversary cannot directly read or modify the index
bits of the pointer, there is a possibility that the pointer arithmetic may be susceptible to an over-
flow or underflow, which could corrupt the index-bits. However, this would typically be flagged
as a bounds-mismatch on a pointer dereference as the index bits would point to a different entry
with unpredictable bounds. This can also be prevented by using guard-bits before and after the
index bits, which would prevent such overflow or underflow from affecting the index bits.

5 PERFORMANCE EVALUATIONS

We first discuss our evaluation methodology, and then we discuss the overheads of our software
and hardware modifications.
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5.1 Methodology

We package the software changes for HeapCheck (including the malloc/free hooks) as a shared
library and use instrumentation added with LLVM10 to add an initialization function before
the program main. The hardware changes for HeapCheck are modeled in Gem5 v20.0 [21]. For
our performance evaluations, we use 13 C/C++ benchmarks available in SPEC-CPU2017 [8]
with the ref dataset. We evaluate the overheads of our software instrumentation by running
the instrumented binaries to completion on a native machine (Intel Xeon CPU E-2174G at 3.80
GHz), and comparing them against uninstrumented binaries. For hardware overheads, we use
the instrumented binary and run it with and without the bounds-checks on Gem5 in System-Call
Emulation mode. We fast-forward the first 10 billion instructions to skip the initialization phase
and warmup the caches, and track statistics for 1 billion instructions. The hardware configuration
we use for Gem5 is shown in Table 1.

5.2 Performance Overheads

First, we discuss the overheads of the software instrumentation needed for BITable management,
then the overheads of hardware-based bounds-checks and then dissect the overheads for the worst-
performing workloads and evaluate sensitivity of performance to cache size.

Software Instrumentation Overheads: We first evaluate the slowdown due to the malloc/free
instrumentation. Figure 10 shows the execution time of applications linked with our shared library
intercepting malloc/free calls to update the BITable, normalized to the execution time of uninstru-
mented binaries. To run these instrumented binaries natively, we allocate BIEntries on mallocs, but
do not embed the index bits in the pointer; on frees, we delete a random BIEntry. On average, the
SW instrumentation for BITable management (without bounds-checks) adds only 0.5% slowdown
across all programs. Workloads with the high malloc frequency (gcc, perlbench) have slowdowns of
up to 1.8%–2.4% due to increased cache accesses for BITable updates. Other workloads with fewer
mallocs see negligible performance impact.

Hardware Bounds-check Overheads: Using the instrumented binaries, we evaluate the slow-
down due to the hardware-based bounds-checks in Gem5. Figure 11 shows the execution time for
1-billion instructions of our instrumented binaries running with Bounds-checks, normalized to
execution time of the same binary without Bounds-checks. On average, the bounds-checks add
only 1% slowdown. The main driver of these overheads is the memory accesses incurred by bounds-
checks due to misses in the BICache. Workloads such as xalancbmk, gcc and parest, with high fre-
quency of mallocs, tend to have smaller buffers and hence fewer buffer accesses sharing the same
index. This results in larger working sets of bounds metadata, causing relatively higher BICache
miss rates (2% to 16%) and higher slowdown (1% to 6%). Other workloads, with higher than 99% BI-
Cache hit rate, have negligible slowdown. Overall, our design achieves exceptionally high locality
of BITable accesses (average BICache hit rate of 97%); with such locality, any performance impact
on TLB is negligible, especially if the BITable uses large pages.

Dissecting Worst-case Slowdown from Bounds-checks: To understand the slowdown in the
worst-performing workloads like xalancbmk, gcc, parest, we study the scenarios in which they
incur BICache misses. More than 98% of the BICache misses are incurred by bounds-checks on load
operations (only 2% of the misses occur on stores). Figure 12 shows the break-down of BICache-
Miss for load operations based on where the load was serviced from (by absolute numbers and
by percentage). xalancbmk has the most BICache misses (as it has the highest miss rate), and
consequently the highest slowdown. However, gcc has a higher miss rate than parest, but incurs
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Table 1. Gem5 Hardware Configuration

Processor

Core Single-core, Out-of-order Execution, 3.5 GHz

ROB—192 entries, LQ—32 entries, SQ—32 entries

Cache-Hierarchy

L1-DCache, L1-ICache 32 KB/core, 8-way, 64 B line-size, 2-cycle latency

BICache 8 KB/core, 8-way, 64 B line-size, 2-cycle latency

L2-Cache 2 MB/core, 16-way, 64 B line-size, 20-cycle latency

DRAM Memory-System

Bus frequency 1200 MHz (DDR 2.4 GHz)

DRAM Timings tCL=14 ns, tRCD=14 ns, tRP=14 ns

DRAM Organization 1-channel, 1 KB Row-Buffer

Fig. 10. Slowdown due to Software Instrumentation for BITable management, with native execution (aver-

aged over five runs). On average, SW instrumentation adds 0.5% slowdown.

Fig. 11. Performance Impact of Hardware Bounds-checks, modeled in Gem5. On average, the bounds-checks

add only 1% slowdown, owing to high BICache hit rates (98%).

lesser slowdown—because it has a much lesser fraction of BICache misses when the load is an
L1-Hit (that impacts performance more than a BICache-Miss on a load that was an L1-Miss). This
lack of locality in BICache accesses on L1-Cache Hits is the main driver for the slowdown for
xalancbmk and parest. However, this can be addressed by making the BIEntry allocation algorithm
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Fig. 12. Breakdown of Scenarios where Bounds-checks on Loads have a BICache Miss.

Fig. 13. Slowdown due to Bounds-checks vs. BICache Size.

locality-sensitive, especially for sub-cacheline objects that are common in these benchmarks, to
reduce the overheads for these workloads.

Sensitivity to BICache Size: While our evaluations use a default BICache size of 8 KB, we also
analyzed the overheads with other BICache sizes. Figure 13 shows the slowdown due to Bounds-
checks and BICache-Miss rates as the BICache size is varied from 1 KB to 64 KB. As the BICache
size increases, slowdown decreases from 7% (1 KB) to 3% (4 KB) to 1% (8 KB). With further increase
in BICache size, the decrease in slowdown is marginal. This is because beyond 8 KB, the average
BICache-Miss rates do not decrease much, as the miss rates for most workloads is less than 1%.

5.3 Memory Overheads

Figure 14 shows the overheads in memory consumption of HeapCheck. In our default design, the
BITable needs additional memory of up to 256 MB (16M entries with 16-Byte per entry) and con-
sumes 39% extra memory on average across SPEC-2017 benchmarks; this is comparable to the over-
head (38%) of prior work Chex86 [40] and much lower than that of several prior bounds-checking
solutions in Table 2, which consume 50%–90% extra memory on average. Moreover, a memory
optimized implementation of our BITable (BITable-MemOpt) is also possible with 12-Byte entries
(storing 48-bit base and bounds) and 8M entries, which only adds 17% extra memory on average.
These overheads are negligible in comparison to prior shadow-memory-based solutions like ASAN
that increase memory consumption to more than 300%. This is because, unlike ASAN where the
memory overhead is proportional to the program memory footprint, HeapCheck’s overheads are
proportional to the number of objects allocated in a program; additionally, even though a mmap re-
serves the whole BITable in HeapCheck at the beginning, the lazy physical page allocation ensures
physical memory is consumed only for the BIEntries that are initialized and accessed.

With regards to memory-bandwidth consumption, a simplistic design where the BICache misses
are serviced directly by the main-memory can increase the memory bandwidth by 29%. A practical
design however would cache BICache entries in the L2 or the LLC, and misses from the BICache
would get serviced from these caches; this can significantly reduce the extra memory accesses to
ensure that it does not cause any significant performance impact.
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Fig. 14. Memory Consumption with and without HeapCheck.

5.4 Discussion: Mitigating Spectre v1 with Bounds-checking

Like several prior memory-safety works, our threat model primarily focuses on memory-safety
vulnerabilities, and transient execution attacks are out of scope. Hence our design executes the
BITable access for bounds-checks and the associated data access in parallel during speculative
execution and serializes them only at commit time. But note that this is not the main driver of
performance of our design. Our low performance overheads originate from the fact that the BITable
accesses have a BICache hit at an average hit rate of 98%, which is serviced in a single-cycle.

Our design also holds the promise of preventing Spectre-v1 if the BITable access and data ac-
cess are serialized during out-of-order execution. The performance impact of such serialization
promises to be minimal compared to comparable solutions as our bounds-metadata is more likely
to be found in the BICache (our 8 KB BICache has 98% avg hit rate). However, note that bounds-
checking solutions cannot prevent the majority of transient execution attack variants (e.g., Spectre-
v2,v3,v4, SpectreRSB, MDS, LVI, etc.), and holistic defenses are likely to be required to completely
mitigate such vulnerabilities. Hence, we choose to keep transient execution attacks out of our
threat model. Future works may explore how our work can support defenses for transient execu-
tion attacks.

6 RELATED WORK

In this section, we describe prior solutions for memory safety, and compare our work against them.

6.1 Bounds-checking-based Solutions

AOS [18] proposes using the unused pointer bits to store a Pointer-Authentication-Code (PAC),
which functions as a key to a hashed bounds table entry with the associated bounds. But the
hashed bounds table design in AOS may cause both performance and security challenges, while
its requirement of adding new PAC generation instructions into a program causes compatibility
issues. We discuss these concerns in detail next:

• Performance: The hashed bounds-table accesses in AOS result in random access patterns
lacking in spatial locality, as objects that lie in the same memory cache line or neighboring
cache lines have their bounds-entries scattered across the memory without locality. More-
over, the 16-bit PAC, used as the bounds-index, only has 64K different values. If a program
has 2–4M active objects at a time (we observe 3 SPEC-CPU17 workloads in this range), then
each PAC is shared by 32–64 bounds. As a cacheline stores eight bounds entries (8-byte each),
the lookup of a single object-bounds could require accessing 4 to 8 cache lines from memory.
This could result in extremely poor cache hit rates and a high slowdown in the worst-case.
AOS (Section IX-A in Reference [18]) acknowledges that it suffers a worst-case slowdown
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Table 2. Comparison with Prior Solutions Based on Type of Memory Safety, Backward Compatibility,

Slowdown, and Memory Overhead

Type Solution Spatial Safety Temporal Safety Backward Compatibility Slowdown Memory Overhead

Bounds-checking HeapCheck Heap Heap � 1.5% (SPEC-2017) 17% (SPEC-2017)

Bounds-checking AOS [18] Heap Heap X 8.4% (SPEC-2006) Not available

Bounds-checking Chex86 [40] � � � 15% (SPEC-2017) 38% (SPEC-2017)

Bounds-checking Hardbound [9] � X X 5–9% (Olden) 55% (Olden)

Bounds-checking Watchdog [23] � � X 24% (SPEC-2000) 56% (SPEC-2000)

Bounds-checking MPX [28] � X X 50% (SPEC-2006) 90% (SPEC-2006)

Bounds-checking BOGO [52] � � X 60% (SPEC-2006) 36% (SPEC-2006)

Bounds-checking CHERI [47] � X X 18% (Olden) 90% (Olden)

Bounds-checking CHERIvoke [48] X � X 5% (SPEC-2006) 12.5% (SPEC-2006)

Bounds-checking Cornucopia [13] X � X 2% (SPEC-20006) 33% (SPEC-20006)

Trip-wire REST [42] Linear Until Realloc X 25% (SPEC-2006) Not-available

Trip-wire Caliform [35] Linear Until Realloc X 14% (SPEC-2006) Not-available

Memory-Bug Detector ASAN [37] Linear Until Realloc � 75% (SPEC-2006) 220% (SPEC-2006)

Backward Compatibility is defined as no new instructions added to the binary and no change in binary layout. Slowdown and Memory Overhead use values
reported in prior works.

of >2X for gcc due to “cache pollution caused by bounds metadata.” In contrast, HeapCheck
uses a linear bounds-table design that enjoys excellent bounds-cache locality (98% hit rate
in 8 KB cache) and only has a worst-case slowdown of 6% (and 1.8% for gcc).
• Security: AOS can suffer from PAC collisions for applications with millions of active objects,

as the 16-bit PAC only has 64K unique values. Such PAC collisions have a possibility of
resulting in bounds-mismatches with security implications. AOS (Section VI in Reference
[18]) acknowledges that “PAC collisions can result in a false-positive,” which results in a
non-zero probability of false declaration of an attack. In contrast, our linear bounds table
design does not incur such false positives as it ensures that all objects are provided unique
index values.
• Compatibility: AOS requires adding new instructions into the program source code (i.e.,

using ARM’s ISA extensions) for generating the PAC for a pointer. Hence, its protection is
not backwards compatible with applications that do not have their source code available
or where recompilation is not possible. In contrast, HeapCheck is particularly designed to
not require any new instructions or changes to the source code or binary layouts, to ensure
pointers in legacy code and shared libraries are also protected.

Chex86[40] provides spatial and temporal safety by storing object-bounds in a capability table,
indexed with a capability-ID. The key challenge with such a design is the additional overhead
of mapping capability-IDs to pointers. Transfer of capability-IDs between pointers occurs rule-
based for pointers transferred via register operations. For pointers derived from memory locations
(e.g., pointers spilled to stack, pointer-chasing patterns), Chex86 requires speculation hardware
to predict the capability-ID and a lookup to a five-level Pointer-Alias Table using the pointer-
value to confirm the predicted value is correct. Mis-speculations of the capability-ID can delay
data accesses considerably as the five-level alias-table lookups and the capability-table lookup fall
on the critical path of the data access, causing high slowdown. In comparison, HeapCheck has
automatic metadata tracking for all pointers (even spilled pointers or pointer chasing patterns)
as the index to the bounds metadata is always inline with the pointer-value in the top-bits and
propagates automatically during all pointer operations (ALU operations or pointer read/writes).
This limits the slowdown of HeapCheck.
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Hardbound [9] proposed hardware-based bounds-checks by storing bounds-metadata in
shadow-memory and provided spatial safety. Watchdog [23] extended this design to also pro-
vide temporal safety at added cost (24% average slowdown) by associating pointers with a unique
identifier that can be revoked (also stored in the shadow-memory). The main problem with such
solutions is that each memory word of the program requires a shadow-memory entry storing the
bounds. So the memory overhead becomes proportional to the program memory footprint in such
solutions. Our solution is quite different as it stores the bounds-metadata per object and hence
our memory-overhead is proportional to the number of objects in the program (much smaller
than memory footprint). Consequently, Hardbound and Watchdog have average memory over-
head of >50%, while ours is much smaller, 17% on average. Additionally, shadow-memory bounds-
metadata accesses in Hardbound and Watchdog have limited locality, as different shadow-memory
locations are accessed for loads/stores to different words of a single object, resulting in high slow-
down. In our work, loads/stores to different words of a single object access the same BITable en-
try, enabling bounds-checks to have more than 98% hit-rate in the BICache and have negligible
slowdown.

MPX [28] and BOGO [52] offer spatial safety and temporal safety, but incur high overheads (50–
60% on average) as their bounds-checks require extra explicit instructions and involve expensive
table-lookup as the bounds-table is organized as a two-level trie. In contrast, our bounds-checks
require at-most a single table-lookup that has high temporal locality and is inserted transparently
in hardware during load/store execution.

Fat-pointer-based solutions like CHERI [46–48] provide memory safety at the cost of invasive
changes to the ISA and the binary layout, that impacts compatibility with legacy code. Low-fat

Pointers [19] avoid compatibility issues by implicitly encoding the object size in the pointer value,
enabled by placing the object in a suitable region of memory. While this provides spatial safety,
this comes at the cost of being incapable of providing temporal safety. This is because accesses
to dangling (freed) pointers are always valid, as there is no way to revoke the pointer value, and
the bounds encoded in it, on frees. In-fat Pointers [49] is an extension of low-fat pointers, that
provides spatial safety at sub-object granularity, but similarly does not provide temporal safety. In
comparison, our work only stores the index to the bounds-metadata in the top bits of the pointer
and stores the actual bounds metadata in a disjoint table. So it is able to maintain compatibility
with legacy shared libraries and provide both temporal and spatial memory safety for all heap
object pointers, even those passed to legacy shared libraries, while ensuring negligible slowdown.

No-fat [14] is a contemporary work, that uses a binning memory allocator to implicitly encode
the object size and the base in the pointer value itself for spatial safety. But because this metadata
is implicit, it needs to perform bounds-checks on all pointer arithmetic and when the pointer
is written to memory or passed to a function, that can result in performance overheads (8% on
average). As, HeapCheck stores the bounds-table index explicitly in the top bits of the pointer, it
can provide memory safety with only bounds-checks on pointer dereference, resulting in lesser
slowdown (less than 2% on average). Additionally, HeapCheck has better compatibility with legacy
code, as No-fat requires insertion of new ISA instructions for bounds-checking in application code
and subsequent recompilation.

6.2 Probabilistic Solutions

Trip-wire-based solutions such as REST [42] and Caliform [35] provide low-cost detection of
memory errors (2%–18% slowdown), by inserting magic values (trip-wires) at an object or sub-
object granularity and checking for them in hardware, to detect out-of-bounds accesses that ac-
tivate such trip-wires. However, such solutions cannot detect larger out-of-bounds accesses, that
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access memory beyond the trip-wire. Our solution provides precise detection of all out-of-bounds
accesses, at better performance.

Memory Tagging-based solutions like SPARC’s SSM [29] or ARM’s MTE [4, 38], assign a tag
or “color” for an object-pointer pair, maintain these tags separately for both, and check if the tags
of a pointer and the accessed memory match on a pointer dereference. While such solutions have
negligible slowdown (<5% [39]), they are only able to detect errors probabilistically as they use
4-bit tags (stored in the top-bits of the pointer), that are reused for different objects, leading to false
negatives. Our work also repurposes the pointer-bits, but in contrast, uses them to store the index
to the actual bounds-information; hence our work provides precise enforcement of object-bounds
(higher coverage) at comparable slowdowns.

6.3 Other Solutions

Frameworks such as Address Sanitizer [37], Valgrind [27], and others, are powerful software
tools detecting memory-safety bugs (and other memory errors), as they provide rich debugging
information both for heap and stack, and are compatible with existing source code (only requiring
recompilation). However, they can incur prohibitive overheads (ASAN-75%, Valgrind 4-22x) that
makes them better suited for development/test than for runtime protection of operational systems.

Other solutions providing code and data pointer integrity, like ARM’s Pointer Authentication

Code [33] and Zero [15], prevent pointer tampering and exploits due to memory-safety vulnerabil-
ities like control-flow or data-flow hijacking, return oriented programming, and others. However,
such solutions do not prevent the root-cause, i.e., buffer-overflows or use-after-free like bugs, and
continue to be vulnerable to corruption of non-pointer data structures due to such bugs.

7 CONCLUSION

Memory-safety bugs in C/C++ programs have been a leading cause of vulnerabilities for over three
decades; yet an effective and practical-to-adopt memory-safety solution has thus far been elusive.
In this work, we presented a hardware-based solution that prevents errors like buffer overflows
and use-after-free in heap objects virtually for free. Our solution, HeapCheck, has minimal per-
formance overhead (1.5% slowdown), maintains compatibility with legacy code and has detected
87 lines of code with out-of-bounds reads in Glibc functions and SPEC-CPU2017 workloads, and
provides an effective and low-cost solution to detect and prevent memory-safety bugs.
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