
1

Yet Another Mirage of Breaking MIRAGE:
Debunking Occupancy-based Side-Channel Attacks on Fully Associative

Randomized Caches
Chris Cao

University of Toronto
chrisj.cao@mail.utoronto.ca

Gururaj Saileshwar
University of Toronto

gururaj@cs.toronto.edu

Abstract—Recent work presented at USENIX Security 2025
(SEC’25) claims that occupancy-based attacks can recover AES
keys from the MIRAGE randomized cache. In this paper, we
examine these claims and find that they arise from a modeling
flaw in the SEC’25 paper. Most critically, the SEC’25 paper’s
simulation of MIRAGE uses a constant seed to initialize the
random number generator used for global evictions in MIRAGE,
causing every AES encryption they trace to evict the same
deterministic sequence of cache lines. This artificially creates a
highly repeatable timing pattern that is not representative of a
realistic implementation of MIRAGE, where eviction sequences
vary randomly between encryptions. When we instead randomize
the eviction seed for each run, reflecting realistic operation, the
correlation between AES T-table accesses and attacker runtimes
disappears, and the attack fails. These findings show that the
reported leakage is an artifact of incorrect modeling, and not an
actual vulnerability in MIRAGE.

I. INTRODUCTION

MIRAGE [1] is a randomized cache design, proposed in
2021, that emulates a fully associative cache with globally
random evictions, eliminating set-conflict cache side channels.
It builds on theoretical foundations such as multiple random-
ized set indexing functions using block ciphers, and power-of-
two-choices [2] based load-balancing, guaranteeing that set-
associative evictions are practically impossible in a system’s
lifetime. Given these strong guarantees, several works have
examined whether MIRAGE’s security holds in practice.

In 2023, “Are Randomized Caches Truly Random”
(ARCTR) [3] claimed to induce set-conflicts in MI-
RAGE, breaking its security guarantees. However, subsequent
work [4] showed that these were the result of incorrect mod-
eling by ARCTR, caused by a buggy cipher implementation,
and that MIRAGE’s security guarantees remained intact.

More recently, the SEC 2025 paper, “Systematic Evaluation
of Randomized Cache Designs against Cache Occupancy”
(RCO) [5], claims that MIRAGE is vulnerable to cache-
occupancy-based side-channel attacks that can leak secret AES
keys. Specifically, RCO (in Section 7), claims that the AES
T-Table implementation can leak the AES key on MIRAGE
via the cache occupancy side-channel, and that MIRAGE’s
fully associative eviction policy makes it more susceptible than
other randomized caches. A subsequent paper at SEC 2025,
“SoK: So, You Think You Know All About Secure Randomized
Caches?” [6] reiterates these claims in its Figure 17. This
paper examines whether these claims hold up or whether they
are artifacts of modeling flaws like the ARCTR paper.

First, we attempted to reproduce the AES key recovery
results reported in the RCO paper using their artifact1, specif-
ically the guessing entropy (GE) for an unknown victim key
(Figure 10 in the RCO paper [5]). Using the RCO artifact, we
initially could not reproduce their results.

Bug-1: GE Analysis Bug in RCO. Figure 1 compares the
guessing entropy (GE) for an AES key (higher is better) for
MIRAGE using RCO’s raw data (RCO – red line) and our
reproduced data (Reproduced – blue line), along with other
randomized caches. In the original analysis (Figure 1a), RCO
reports GE dropping below 80 after just 300 AES traces. In
contrast, our reproduced data shows the same GE reduction
occurs after 1400 traces.

Upon investigation, we identified a bug in the RCO artifact’s
GE analysis code. The bug stems from an incorrect indexing
of AES traces used for the analysis (see Appendix A), which
are spread over six trace files in RCO’s raw data, due to
which their code uses roughly 6× more traces than intended to
calculate GE. This results in an under-reporting of the number
of traces required to reach a given GE in the RCO paper. After
fixing this bug in RCO’s artifact2, the analysis using RCO’s
raw data matches our naive reproduction (Figure 1b), with GE
for MIRAGE now dropping after 1400 traces.

40

60

80

100

Gu
es

sin
g

En
tro

py
 (G

E) (a) Original Analysis in RCO Paper

0 500 1000 1500 2000 2500 3000
Number of Traces

40

60

80

100

Gu
es

sin
g

En
tro

py
 (G

E) (b) Fixed Analysis Bug

MIRAGE (Reproduced)
MIRAGE (RCO)
CEASER-S (RCO)
Sass (RCO)
Scatter (RCO)

Fig. 1: Guessing Entropy (GE) for an unknown AES key, as
the number of AES encryption traces increases. (a) Original
analysis from RCO shows GE reduction for MIRAGE after
300 traces. (b) After fixing the analysis bug, GE reduction
occurs after 1400 traces, consistent with our reproduction.

Next, we examine the validity of this leakage.

1We use the the code artifact with RCO’s paper [5] - https://zenodo.org/
records/14869981 (Github release v2.0, commit: fc07ea6).

2The code for our reproduction, with our bug fixes, is open-sourced at:
https://github.com/sith-lab/yet-another-mirage-of-breaking-mirage

https://zenodo.org/records/14869981
https://zenodo.org/records/14869981
https://github.com/NimishMishra/randomized_caches/releases/tag/v2.0
https://github.com/sith-lab/yet-another-mirage-of-breaking-mirage

2

Bug-2: Global Eviction Modeling Bug in RCO. RCO
attributes AES key leakage to last-round S-Box accesses in
the AES encryption influencing cache occupancy. The attacker
observes this by measuring access times to its own cached
array, building templates for each key-byte value using a
profiled key, and matching these templates against timings
for an unknown key to recover it. However, this explanation
ignores MIRAGE’s random global evictions, which intro-
duce noise in cache occupancy. MIRAGE randomly evicts an
existing LLC line upon every new insertion. Hence, repeated
AES encryptions of even the same plaintext and key evict
different addresses and produce different occupancy (unrelated
to the key), and the attacker’s own accesses also evict its
addresses randomly on each run, introducing further noise.
Thus, an attacker would even find fingerprinting a key difficult
(Figure 3), let alone leak the entire key byte-wise. Investigating
this, we uncover a second bug in RCO’s evaluation:

Modeling Flaw in RCO. RCO’s simulations initialize
the RNG used by MIRAGE’s evictions with a static seed
before each AES encryption, causing a fixed sequence of
evictions on each AES run, not practical in a real attack.

RCO’s simulations seed MIRAGE’s RNG used for evictions
with a fixed value (42) before each AES encryption, restarting
each AES run from an identical state (see Appendix B). This
produces a fixed eviction sequence on each AES encryption,
not representative of MIRAGE. In a realistic modeling of
MIRAGE with random global evictions, the final cache occu-
pancy (O) after each AES encryption should be determined by
both the victim’s accesses (V) and the global random eviction
sequence (R), O ≈ f(R, V). However, as RCO uses a constant
RNG seed, producing a fixed eviction sequence in each run, the
cache occupancy becomes a function of just victim accesses,
O ≈ f(V), artificially creating correlations with the key.

To correctly model MIRAGE while restarting the simulation
for each AES run, we randomize the eviction RNG seed for
each AES run (e.g., using std::random_device3 to seed
the RNG). This models a realistic setting, where the attacker
cannot reset the RNG to a constant state on each AES run.
With this correction, correlations between attacker timings and
keys disappear, and the victim AES key’s guessing entropy
remains high (above 90%), as shown in Figure 4.

Results with Correct Modeling. After randomizing the
RNG seed for MIRAGE in each AES run, the victim key’s
guessing entropy (GE) remains high (>90%), see Fig-
ure 4. Thus, AES key leakage on MIRAGE is infeasible.

To summarize, we make the following contributions:
1) We show that the AES key guessing entropy remains

high in MIRAGE, contradicting the RCO paper’s claims.
2) We identify that RCO’s usage of a fixed RNG seed

for MIRAGE’s evictions creates artificial correlations;
randomizing the seed eliminates any observed leakage.

3Note that on some systems without a hardware-based entropy source,
std::random_device can also result in a deterministic output [7]. Please
validate that the source of randomness you use is truly random on your system.

II. BACKGROUND

A. The MIRAGE Cache

MIRAGE [1] is a randomized cache that prevents conflict-
based side channels by emulating a fully-associative random-
ized cache: every eviction is global and selected uniformly at
random from the entire cache. To support this, MIRAGE over-
provisions invalid tags in each set and uses load-balancing via
the Power-of-2-Choices to maintain available space, avoiding
set-associative evictions. On a miss, the data-store victim is
chosen randomly from all cache lines, its tag is located via
a Reverse Pointer (RPTR) and removed, and the new tag
is inserted via a Forward Pointer (FPTR). With an 8-way
cache augmented with 6 extra ways (75% extra) in the tag-
store, MIRAGE guarantees the probability of a set-associative
eviction is once in 1034 cache installs, an event that takes 1017

years to occur, making set-conflicts practically impossible in
a system’s lifetime and eliminating conflict-based attacks.

B. Cache Occupancy Attacks on Mirage

Cache occupancy attacks measure changes in the overall
occupancy of a shared cache, rather than targeting specific
sets as in set-conflict attacks like Prime+Probe. Because they
exploit aggregate cache usage, all randomized caches without
explicit cache partitioning, such as CEASER, ScatterCache,
and Mirage in principle, leak some information via cache
occupancy. In fact, MIRAGE’s threat model explicitly claims
to not protect against such occupancy-based channels. While
covert channels between two colluding processes can be
naively constructed by modulating the cache occupancy, the
RCO [5] paper claims the existence of a stronger side-channel
on MIRAGE: leaking AES keys via cache occupancy effects.

The RCO paper claims that a victim using an AES T-Table
implementation, can be forced to leak the key in MIRAGE,
by a spy first priming the LLC to a chosen occupancy, letting
the victim run one encryption, then timing accesses to the
attacker’s own cache lines. By correlating these timings with
last-round T-table accesses for guessed keys, they report low
guessing entropy for AES keys (lower than 30%), and claim
full 128-bit AES key recovery on MIRAGE within a few
hours. This paper examines these claims of RCO.

III. ANALYZING CLAIMS OF OCCUPANCY-BASED
SIDE-CHANNEL ATTACKS ON MIRAGE

Using the authors’ publicly released artifact, we first repro-
duced the results in Figure 10 of the RCO paper, as shown
in Figure 1. Once we were able to reproduce the trend, that
the guessing entropy for an unknown AES key reduces after
1400 encryptions, we analyze the root cause of the attack: that
the execution time for an attacker accessing its own array is a
function of the cache occupancy of the AES encryption, which
is in turn a function of the victim’s AES key.

A. Pitfall-1: Fixed Sequence of Evictions Modeled by RCO

RCO Attack Root Cause. The RCO [5] paper claims that
the T-Table implementation of AES running on MIRAGE [1]
can leak the secret key through a cache occupancy attack. The

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte Index (0-15)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

By
te

 R
ow

 In
de

x
(0

-1
5)

Profiled Key, Fixed Seeds

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte Index (0-15)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

By
te

 R
ow

 In
de

x
(0

-1
5)

Victim Key, Fixed Seeds

2421

1894

1368

842

316

211

737

 a
cc

es
s t

im
e

(c
yc

le
s)

(c
en

te
r =

 m
ed

ia
n

63
77

16
37

5)

2526

2005

1485

964

444

77

597

 a
cc

es
s t

im
e

(c
yc

le
s)

(c
en

te
r =

 m
ed

ia
n

63
77

29
72

6)

(a) Fixed Seed for Global Evictions (RCO [5])

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte Index (0-15)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

By
te

 R
ow

 In
de

x
(0

-1
5)

Profiled Key, Random Seeds

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte Index (0-15)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

By
te

 R
ow

 In
de

x
(0

-1
5)

Victim Key, Random Seeds

17051

11611

6170

730

4710

10150

15591

 a
cc

es
s t

im
e

(c
yc

le
s)

(c
en

te
r =

 m
ed

ia
n

63
77

21
73

5)

15956

11008

6060

1111

3837

8785

13734

 a
cc

es
s t

im
e

(c
yc

le
s)

(c
en

te
r =

 m
ed

ia
n

63
77

23
51

3)

(b) Random Seed for Global Evictions (our fix)

Fig. 2: Heatmap of access times for the attacker to iterate through its array. We bin the access times, based on the 256 possible
T-table entries accessed in the last round. The 256 bins are represented in the 16 x 16 matrix. (a) With Fixed Seed for Global
Eviction, as used in RCO [5], there is strong correlation between the heatmaps for profiled key and victim key. (b) After our
fix, with Random Seeds for Global Eviction, the correlations disappear, showing it is infeasible to guess victim AES keys.

637694000 637695000 637696000
Access Time (cycles)

0

20

40

60

80

100

Fr
eq

ue
nc

y

(a) Fixed Seed for Global Evictions
Ciphertext 1
Ciphertext 2
Ciphertext 3
Ciphertext 4

637600000 637700000 637800000
Access Time (cycles)

0

5

10

15

20

25

Fr
eq

ue
nc

y

(b) Random Seed for Global Evictions
Ciphertext 1
Ciphertext 2
Ciphertext 3
Ciphertext 4

Fig. 3: Access Times for the attacker with (a) original RCO implementation and (b) our bug fix for four sample plaintext-
ciphertext pairs with the same key. (a) The original implementation uses a Fixed Seed (42) for Global Evictions in each AES
encryption. (b) Our bug fix initializes the RNG used for Global Evictions, with a random seed (e.g., using time()), for each
AES encryption, mimicking a real system where the seed cannot be reset to a static value each time. Once we address this
issue, the different encryptions are indistinguishable based on access times to the attacker’s array.

root cause of the leakage claimed by RCO is that the sequence
of T-Table accesses in the last round of AES encryption, which
depends on the secret key, can impact the cache occupancy in
MIRAGE. Therefore, the execution time for an attacker to
access a large cached array, parts of which may have been
evicted by the AES encryption, can leak the cache occupancy,
and therefore the secret key.

RCO Attack Mechanism. To perform this attack, RCO [5]
creates a template for the execution times with all possible T-
table entries accessed in the last round (T1 to T255), by using
a known key (profiled key). The attacker measures the execu-
tion time to access its own cached array that occupies 50%
of the MIRAGE cache, using randomly generated plaintext-
ciphertext pairs, and creates the template (T1 to T255) by av-
eraging the access times for Tn= SBOX-Inv(K⊕CT), where
K and CT are bytes of the last-round key and ciphertext. Such
templates can be created for each of the bytes of the round-
key (0 to 15). Later, for an unknown victim key, by creating
a similar template using a guessed key and random plaintext-
ciphertext pairs, the attacker identifies likely key values having
the highest correlation with the profiled template.

Reproducing RCO’s Root-Cause. To validate RCO’s leak-
age, we try to reproduce its root cause, the templates with

correlation between profiled and victim keys. Figure 2a shows
a heatmap visualizing the template built by the attacker, where
each entry represents one of the 256 possible T-table entries
(arranged as a 16×16 matrix) and the cell color encodes the at-
tacker’s average access time, when that entry is accessed in the
last round of AES by the victim. If the profiled-key heatmap
(attacker’s template) closely matches the heatmap with the
guessed victim-key, the guess is likely to be the correct key.
For simplicity, instead of Tn = SBOX-INV(K⊕CT), we use
Tn = K⊕CT for our bins, since SBOX-INV is just a lookup
table, and visualize a single heatmap, averaging the heatmaps
of key bytes 0 to 15.

As shown in Figure 2(a), when we generate the heatmaps by
using the RCO artifact [5] there is a clear correlation between
the templates of the profiled key and the guessed victim key.
This correlation can allow the attacker to leak the victim key
since the templates will be highly correlated when the guessed
key is actually the correct victim key.

RCO’s Bug: Fixed Sequence of Global Evictions. To
investigate the source of the observed correlation, we measured
attacker access times after victim AES encryptions for four
randomly chosen plaintext-ciphertext pairs, each repeated 100
times. Each encryption has a distinct last-round AES T-Table

4

access sequence. Figure Figure 3(a) shows the histogram of
attacker access times. CT1, CT2 and CT3 differ in access times
(although CT3 and CT4 overlap), highlighting that the access
times are indeed correlated with T-Table accesses. However,
notably, all 100 repetitions of each encryption produce identi-
cal access-time measurements, despite global evictions being
intended as random.

This reveals a bug in RCO: the global eviction RNG
is seeded with a static value (42). As a result, each AES
execution follows the same fixed eviction sequence, making
MIRAGE’s behavior deterministic. In a real implementation,
the attacker cannot reset the RNG between runs, so the
deterministic behavior is unrealistic and artificially creates
correlations between access times and AES T-Table sequences.

Our Fix: Accurate Modeling with Random Seed. The
cache occupancy (O) in MIRAGE is a function of both
the Victim accesses (V) and the Global Eviction decisions
(GE), i.e., O ≈ f(V,GE). RCO incorrectly assumes a fixed
sequence of GE for each encryption, making the fingerprinting
of V using O measurements possible. We fix this bug in
RCO, by changing the fixed seed for global evictions to a
randomly chosen seed for each AES encryption simulation,
representative of real systems, where the Global Eviction is
performed by a RNG whose state cannot be reset by the
attacker. After this bug fix, we see that the O is now strongly
impacted by the GE in addition to the V . As shown in
Figure 3(b), with a random seed for each encryption, the
attacker’s access times show random variations of the order
of 100,000 cycles, due to the global evictions unpredictably
evicting the attacker’s own lines during its measurement phase.
These overwhelm minor occupancy differences caused by the
victim which varied timings by few 1000 cycles in Figure 3(a).

After our fix, when we use a random seed for each AES
encryption in Figure 2(b), the correlation between profiled
and victim keys disappears, making the heatmaps virtually
unrelated, eliminating the signal required for key leakage.
This realistic modeling of MIRAGE’s global evictions removes
the attack’s timing signals, preventing AES key leakage on
MIRAGE via occupancy attacks. We provide the code for this
bug fix in Appendix B.

B. Pitfall-2: Unrealistic L1 Cache Configuration

The RCO paper claims to use a 512 kilobyte L1 cache,
as per Section 7.1 of their paper [5]. However, their code
artifact4 uses a 512 byte L1 cache by default which is not
representative of real systems which typically possess atleast
64KB L1 Cache. Modeling a smaller L1 cache, such as 512
byte L1 cache, can inflate the L1 cache misses and LLC
accesses, compared to a 64KB L1 Cache which can provide
hits for all T-table accesses after the first round. Thus, a
512 byte L1 cache can overestimate the attack success. We
confirmed that after updating the initialized seed to be random,
regardless of the L1 cache size being 512-byte like in the RCO
artifact or a more realistic 64KB, there is a lack of correlation
between the heatmaps of the profiled and victim key templates,

4We refer to the code artifact version 2.0 released by the authors on Zenodo
- https://zenodo.org/records/14869981

similar to Figure 2 (b), indicating that AES key leakage is
impractical in MIRAGE.

C. Guessing AES Key after Fixing RCO’s Modeling Issues

We evaluate the Guessing Entropy (GE) for a victim’s AES
key, using the template for a profiled AES key similar to
RCO, using the formula: GE =

∑15
i=0 log2(Ri), where Ri

is the rank of the correct guess for key byte i. Figure 4
shows the guessing entropy (GE) for Mirage based on their
artifact (reproduced), and with our fixes of RCO’s modeling
issues where we use a random seed to initialize the RNG for
global evictions (bug fix). After our bug fixes, we see that
Mirage has high GE above 90%, even after thousands of
AES encryptions, demonstrating that it is resilient to brute-
force key guessing attacks on AES when modeled correctly.

0 500 1000 1500 2000 2500 3000
Number of Traces

20

40

60

80

100

Gu
es

sin
g

En
tro

py
 (G

E)

MIRAGE (reproduced) - Fixed Seed, 512B L1 Cache
MIRAGE (bug fix) - Random Seed, 512B L1 Cache
MIRAGE (bug fix) - Random Seed, 64KB L1 Cache
CEASER-S (RCO)
Sass (RCO)
Scatter (RCO)

Fig. 4: Guessing Entropy (GE) for an unknown AES key,
after our fixes, as number of AES encryptions increases.
MIRAGE has a high GE above 90% even after thousands of
AES encryptions, showing no leakage, once the Eviction RNG
is initialized with a Random Seed, with both a 512B L1 Cache
(like RCO’s artifact) and a more realistic 64KB L1 Cache.

IV. CONCLUDING REMARKS

Our analysis shows that, when modeled faithfully, MIRAGE
remains resilient to occupancy-based side-channel attacks aim-
ing to recover AES keys. The results reported in the RCO
paper [5] arise from unrealistic modeling, most notably the use
of a deterministic sequence of global evictions, across multiple
AES encryptions, which do not reflect MIRAGE’s design. We
encourage the authors of the RCO paper [5] and the SoK
paper on randomized caches [6] to revisit their conclusions
in light of these findings. Our code is open-sourced at https:
//github.com/sith-lab/yet-another-mirage-of-breaking-mirage.

V. ACKNOWLEDGMENT

We thank Moinuddin Qureshi and Tom Ristenpart for their
helpful feedback on an earlier draft of this work.

https://zenodo.org/records/14869981
https://github.com/sith-lab/yet-another-mirage-of-breaking-mirage
https://github.com/sith-lab/yet-another-mirage-of-breaking-mirage

5

REFERENCES

[1] G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating Conflict-Based
Cache Attacks with a Practical Fully-Associative Design,” in USENIX
Security, 2021.

[2] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. on Parallel and Distributed Systems, 2001.

[3] A. Chakraborty, S. Bhattacharya, S. Saha, and D. Mukhopadhyay,
“Are Randomized Caches Truly Random? Formal Analysis of
Randomized-Partitioned Caches,” in HPCA, 2023. [Online]. Available:
https://github.com/SEAL-IIT-KGP/randCache

[4] G. Saileshwar and M. Qureshi, “The mirage of breaking mirage: An-
alyzing the modeling pitfalls in emerging “attacks” on mirage,” IEEE
Computer Architecture Letters, vol. 22, no. 2, pp. 121–124, 2023.

[5] A. Chakraborty, N. Mishra, S. Saha, S. Bhattacharya, and D. Mukhopad-
hyay, “Systematic evaluation of randomized cache designs against cache
occupancy,” in 35th USENIX Security Symposium (USENIX Security 25),
2025.

[6] A. Bhatla, H. R. Bhavsar, S. Saha, and B. Panda, “Sok: So, you think
you know all about secure randomized caches?” in 35th USENIX Security
Symposium (USENIX Security 25), 2025.

[7] cppreference.com, “Random device,” https://en.cppreference.com/w/cpp/
numeric/random/random device.html, 2025.

APPENDIX

APPENDIX A
BUG-1: GUESSING ENTROPY ANALYSIS BUG IN RCO

Bug

def develop_tuples(
round_timing_tuples,
filename, key_position):
datalines = open(filename).

readlines()

index = 0

for data in datalines:

if(index > max_traces):

continue

index = index + 1

.. % process trace

for filename in all_files:
develop_tuples(..)

Fix

def develop_tuples(
round_timing_tuples,

filename, key_position, traces_used):

datalines = open(filename).
readlines()

for data in datalines:

if(traces_used > max_traces):

continue

traces_used = traces_used + 1

.. % process trace

return traces_used

traces_used = 0

for filename in all_files:

traces_used

= develop_tuples(.., traces_used)

Fig. 5: Bug in RCO’s Guessing Entropy Code

Figure 5 illustrates the bug in RCO’s Guessing Entropy
Analysis code. In the original implementation (left), RCO
processes multiple trace files (up to 6 AES trace files) to
calculate the guessing entropy, creating tuples for computing
guessing entropy. The bug arises because the check against
max_traces is applied locally per trace file, rather than
globally across all trace files. As a result, the code uses
ends up using 6 × max_traces, instead of the intended
max_traces, causing the number of AES traces needed for
a given GE to be under-reported by a factor of six.

In our bug fix (right), we introduce a traces_used
variable that tracks the total number of traces used across all
files. This ensures that the max_traces limit is enforced
globally correcting this counting error.

Our reproduction stored all the traces in a single file and
thus was not affected by this bug. The discrepancy between
the reproduced results and RCO’s reported results helped us
identify this issue. The code for this bug fix is available here.

APPENDIX B
BUG-2: GLOBAL EVICTION RNG SEED BUG IN RCO

Bug

VwayTags(const Params *p)
:BaseTags(p),..
replacementPolicy(

p->replacement_policy)

mt_rand(42) // constant seed

{ ..
}

Fix

VwayTags(const Params *p)
:BaseTags(p),..
replacementPolicy(

p->replacement_policy),
{

std::random_device rd;

mt_rand.seed(rd()); // random seed

}

Fig. 6: Bug in RCO’s modeling of MIRAGE’s Evictions

Figure 6 illustrates the bug in RCO’s modeling of MI-
RAGE’s evictions. In the original code (left), the RNG
used for global tag evictions is initialized with a fixed
seed (42). Due to RCO’s attack methodology of restarting
the simulation for each AES encryption, this causes ev-
ery AES simulation to artificially produce the same evic-
tion sequence. The bug fix (right) replaces the fixed seed
with a random seed unpredictable to an attacker generated
via std::random_device, producing a different global
eviction sequence for each AES simulation. This models a
realistic behavior of an attack on MIRAGE. Our patch for the
bug fix is available at this link.

https://github.com/SEAL-IIT-KGP/randCache
https://en.cppreference.com/w/cpp/numeric/random/random_device.html
https://en.cppreference.com/w/cpp/numeric/random/random_device.html
https://github.com/sith-lab/yet-another-mirage-of-breaking-mirage/commit/31c6f80
https://github.com/sith-lab/yet-another-mirage-of-breaking-mirage/blob/main/src_randseed_patch/vway_tags.cc.patch

	Introduction
	Background
	The MIRAGE Cache
	Cache Occupancy Attacks on Mirage

	Analyzing Claims of Occupancy-Based Side-Channel Attacks on MIRAGE
	Pitfall-1: Fixed Sequence of Evictions Modeled by RCO
	Pitfall-2: Unrealistic L1 Cache Configuration
	Guessing AES Key after Fixing RCO's Modeling Issues

	Concluding Remarks
	Acknowledgment
	References
	Appendix
	Appendix A: Bug-1: Guessing Entropy Analysis Bug in RCO
	Appendix B: Bug-2: Global Eviction RNG Seed Bug in RCO

