
Hardware Support to Improve Fuzzing
Performance and Precision

Ren Ding†, Yonghae Kim†, Fan Sang, Wen Xu, Gururaj Saileshwar, TaesooKim

Georgia Institute of Technology

†Authors contributed equally to this work.

CCS 2021

Fuzz Testing 2

} One of the most effective bug-finding techniques.
} Minimal manual efforts & pre-knowledge required.

} E.g., ClusterFuzz1 has uncovered numerous bugs in real-world programs.
} >25K bugs in Google Chrome.

} Enormous executions require huge computing resources.

1 Google’s in-house fuzzing infrastructure.

Randomly
mutated inputs

Target Program Monitor abnormal
behaviors

CCS 2021

Coverage-Guided Fuzzing
} Inputs reaching more code paths are favored.

} Thus, feedback guidance depends on code coverage.
} To measure code coverage, insert code at each basic block (BB).
} After program execution, count # of reached BBs or BB edges.

BB0

BB1
jmp

jne

BB2

ret

Target Program

3

Coverage Bitmap

Inserted code for
coverage-map update.

Block or
edge count

Randomly
mutated inputs

Feedback Guidance

CCS 2021

AFL’s Tracing Overhead 4

Assembly code in AFL-clang

preparing 8 spare registers
push %rbp
push %r15
push %r14
...
mov %rax, %r14
[Basic Block]: bitmap update
movslq %fs:(%rbx), %rax
mov 0xc8845(%rip), %rcx
xor $0xca59, %rax
addb $0x1, (%rcx,%rax,1)
movl $0x652c, %fs:(%rbx)

Program
Code

Inserted code

Basic Block (BB)

2 The results are measured on an x86 platform across SPEC 2006 benchmarks.

1. Instruction overhead.
- Increase program size (2x ↑).2

2. Execution overhead.
- Increase cache port contention.
- Reduce cache locality.

} Software instrumentation still incurs a significant runtime overhead.
} 60% in AFL-clang and 260% in AFL-QEMU.2

¨ In AFL-QEMU, binary translation and trap handling overhead further degrades the performance.

CCS 2021

Motivation 5

} Achieving a low overhead will bring an immediate return.
} More fuzzing tests in finite time.
} Substantial computing resource saving.

} Essential task of fuzzing: Monitor control-flow transfer and manage
code-coverage information.

} In HW, every control-flow divergence is observed and managed.
} There might be enough information to manage code coverage in HW.

Can we design a customized hardware platform for fuzzing?

CCS 2021

Overview of SNAP 6

} A customized hardware platform to enhance fuzzing
performance and precision. User

OS

Fuzzer

Branch
Predictor

Execution
Unit

CPU

Corpus

Mem

Feedback

b0 b1 b2 ...

Syscall

Device Driver
Branch
Records

Bitmap

mmap()hwtrace()

LBQ

exe.

HW
Fig 1. SNAP workflow.

Support transparent fuzzing in HW.
- No requirement of source code.

Hardware-based tracing at near-zero cost.
- Reduces tracing slowdown from 600% to 3%.

Expose richer feedback from HW to SW.
- Uses micro-architectural state to improve fuzzing precision.

Generic interfaces supporting variety of fuzzers.
- <100 LoC required in various fuzzers in FuzzBench.

CCS 2021

SNAP Architecture 7

} SNAP is prototyped on top of the RISC-V BOOM core.
} Hardware primitives (4.8% area and 6.5% power overhead).

} Trace Decision Logic.
} Bitmap Update Queue (BUQ).
} Last Branch Queue (LBQ).

Fetch
Controller

L1 I-Cache

Branch
Predictor

Branch
Unit

⋅⋅⋅
Fetch Buffer

LDQ1 STQ2 BUQ

Fetch Stage Execution Stage Memory Stage

Issue
RegRead

Trace
Decision
Logic

{uses_buq, uses_lbq, inst_bytes}

Fetched inst.

L1 D-Cache

Branch Prediction
Front-end

Opportunistic
Bitmap Update

Branch Resolution Info

Aggregation

target address, prediction result

Decode
Rename
Dispatch LBQ

from dispatch stage,
allocate new entries.

❶

❷

❸❹

❺

A
L
U ❻

❼

1LDQ (Load Queue)
2STQ (Store Queue)

Determines which instruction to trace.
Generates bitmap update requests.
Records last-executed branches.

Fig 2. SNAP Architecture.

CCS 2021

Trace Decision Logic 8

} Determines which instruction needs to be traced.
} Tags two bits.

} uses_buq: target instruction of a branch.
} uses_lbq: control-flow instruction.

} Tags instruction bytes (inst_bytes).
} Used in our edge encoding algorithm.

} Lightweight computations.
} Does not incur clock cycle delays.

Fetch Stage

Fig 3. Trace decision logic in fetch stage.

Fetch
Controller

Branch
Predictor

Fetch Buffer

Trace
Decision
Logic

Fetched inst.

Branch Prediction

{uses_buq, uses_lbq, inst_bytes}

CCS 2021

Bitmap Update Queue 9

} Enqueues instructions tagged with uses_buq.
} Operates through four states:

} s_init: Calculates the bitmap location.
} s_load: Reads edge count from the bitmap location.
} s_store: Writes edge count+1 to the same location.
} s_done: Waits until being deallocated.

State ⋅⋅⋅ Addr

tail à

s_init ⋅⋅⋅

s_init ⋅⋅⋅
head à s_init ⋅⋅⋅

Coverage Bitmap

0

0

0

BUQ

addr A

addr B

addr C

Fig 4. Coverage bitmap update by BUQ.

Edge count

BB0

BB1
jmp

jne

BB2

ret

addr A

addr B

addr C

CCS 2021

Bitmap Update Queue 10

} Enqueues instructions tagged with uses_buq.
} Operates through four states:

} s_init: Calculates the bitmap location.
} s_load: Reads edge count from the bitmap location.
} s_store: Writes edge count+1 to the same location.
} s_done: Waits until being deallocated.

State ⋅⋅⋅ Addr

tail à

s_init ⋅⋅⋅

s_init ⋅⋅⋅
head à s_init ⋅⋅⋅

BUQ

addr A

addr B

addr C

s_load

Read

Fig 4. Coverage bitmap update by BUQ.

Coverage Bitmap

0

0

0

Edge count

BB0

BB1
jmp

jne

BB2

ret

addr A

addr B

addr C

0

CCS 2021

Bitmap Update Queue 11

} Enqueues instructions tagged with uses_buq.
} Operates through four states:

} s_init: Calculates the bitmap location.
} s_load: Reads edge count from the bitmap location.
} s_store: Writes edge count+1 to the same location.
} s_done: Waits until being deallocated.

Fig 4. Coverage bitmap update by BUQ.

State ⋅⋅⋅ Addr

tail à

s_init ⋅⋅⋅

s_init ⋅⋅⋅
head à s_load ⋅⋅⋅

BUQ

addr A

addr B

addr C

Coverage Bitmap

0

0

0

Edge count
Write

s_store 1

increment by 1

BB0

BB1
jmp

jne

BB2

ret

addr A

addr B

addr C

CCS 2021

Bitmap Update Queue 12

} Enqueues instructions tagged with uses_buq.
} Operates through four states:

} s_init: Calculates the bitmap location.
} s_load: Reads edge count from the bitmap location.
} s_store: Writes edge count+1 to the same location.
} s_done: Waits until being deallocated.

Fig 4. Coverage bitmap update by BUQ.

State ⋅⋅⋅ Addr

tail à

s_init ⋅⋅⋅

s_init ⋅⋅⋅
head à s_store ⋅⋅⋅

BUQ

addr A

addr B

addr C

Coverage Bitmap

1

0

0

Edge count

s_done

BB0

BB1
jmp

jne

BB2

ret

addr A

addr B

addr C

CCS 2021

Edge Encoding in SNAP 13

} How to calculate the bitmap location?
} Calculate a hash and use it as an index to the bitmap.
à Hash collisions can exist.

} Conventional techniques use:
} Random basic block ID or memory address of basic block.

} SNAP takes:
} Target address of a branch (addr).
} Instruction bytes of a target instruction (inst_bytes).

} Instruction bytes are used to increase the entropy and
reduce hash collisions.

inst_bytes[31:16] inst_bytes[15:0]

XOR

addr:

XOR hash

*next prevHash = hash >> 1

Target Instruction

prevHash

Fig 5. Edge encoding proposed in SNAP.

CCS 2021

Last Branch Queue 14

} Enqueues instructions tagged with uses_lbq.
} Records the information of the last 32 branches.

} Branch sequence: immediate control-flow context.
} Prediction Results: approximated data-flow feedback.

Fig 6. Example of control- and data-flow feedback in LBQ.

while(*cur != ‘\0’){
switch (*cur) {

case ‘S’: ...
case ‘L’: ...
case ‘T’: ...

}
}

Prediction Result

Branch Sequence

1st

2nd

Input

LBQ

CCS 2021

Last Branch Queue 15

} Enqueues instructions tagged with uses_lbq.
} Records the information of the last 32 branches.

} Branch sequence: immediate control-flow context.
} Prediction Results: approximated data-flow feedback.

Fig 6. Example of control- and data-flow feedback in LBQ.

while(*cur != ‘\0’){
switch (*cur) {

case ‘S’: ...
case ‘L’: ...
case ‘T’: ...

}
}

Prediction Result

Branch Sequence

1st

2nd

Input

LBQ

1st S L L T T

✓ ✓ ✓ ✓ ✗

CCS 2021

Last Branch Queue 16

} Enqueues instructions tagged with uses_lbq.
} Records the information of the last 32 branches.

} Branch sequence: immediate control-flow context.
} Prediction Results: approximated data-flow feedback.

Fig 6. Example of control- and data-flow feedback in LBQ.

while(*cur != ‘\0’){
switch (*cur) {

case ‘S’: ...
case ‘L’: ...
case ‘T’: ...

}
}

Prediction Result

Branch Sequence

1st

2nd

Input

LBQ

1st

2nd

S L L T T

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✗

CCS 2021

Micro-architectural Optimizations 17

} Bitmap update is not on the critical path of program execution.
} Opportunistic bitmap update.

} Send only when unused cache bandwidth is observed or the BUQ is full.
} Memory request aggregation.

} Aggregate bitmap update requests to the same bitmap location.

Bitmap
Update

Scheduler

L1 Cache

Load Store

Fig 7. Opportunistic bitmap update.

Assign the
lowest priority State ⋅⋅⋅ Addr

tail à

s_init ⋅⋅⋅ addr A

s_init ⋅⋅⋅ addr A
head à s_store ⋅⋅⋅ addr A

BUQ

Fig 8. Memory request aggregation.

1. Search for entries
sharing the same addr.

2. Update on behalf of the
matched ones.

Write edge count+3
instead of edge count+1

s_done

s_done
s_done

CCS 2021

Experimental Setup 18

} Prototyped SNAP on top of the RISC-V BOOM core.
} Evaluated on Amazon EC2 F1 controlled by FireSim.

} An open-source FPGA simulation platform.
} Each FPGA instance runs Linux kernel v5.4.0.
} Enabled user emulation of QEMU v4.1.1 to profile encoding collisions.

} Evaluated benchmark suites:
} SPEC CPU2006 benchmark suite.
} Binutils v2.28.

CCS 2021

Tracing Overhead 19

} SNAP incurs a barely 3.14% overhead.
} Significantly outperforms SW solution (AFL-gcc: 599%).

} Main reasons of performance benefits:
} No extra instructions for tracing/coverage-map update.
} Reduced memory requests.

¨ Request aggregation; 13% on avg. & up to 40%.

} Major cause of overhead: Cache thrashing.
} Memory accesses to the coverage bitmap can evict useful

cache lines from caches.

Name
SNAP (%)

AFL-gcc (%)
32 KB 64 KB 128 KB

perlbench 7.63 4.28 4.20 690.27
bzip2 2.32 2.21 2.10 657.05
gcc 7.85 5.11 4.97 520.81
mcf 1.75 1.54 1.54 349.83
gobmk 16.92 5.25 4.92 742.98
hmmer 0.72 0.60 0.54 749.56
sjeng 7.29 0.68 0.52 703.44
libquantum 0.80 0.67 0.44 546.67
h264ref 10.37 0.27 0.07 251.56
omnetpp 13.88 5.55 5.37 452.89
astar 0.37 0.30 0.30 422.96
xalancbmk 21.24 11.26 11.11 1109.24
Mean 7.59 3.14 3.00 599.77

Reduce the overhead
to near-zero (3%).

Table 1. Tracing overhead across SPEC 2006 benchmarks

CCS 2021

Fuzzing Throughput 20

Fig 10. The average execution speed from fuzzing across Binutils v2.28.

} AFL with SNAP (AFL-SNAP) achieves 41% and 228x higher execution speed than AFL-gcc and AFL-QEMU.
} With micro-architectural optimizations, SNAP outperforms the prior work (PHMon) which only achieves a

16x higher speed.

CCS 2021

Edge Coverage 21

} AFL with SNAP (AFL-SNAP) consistently covers more paths throughout the experiment.
} AFL-QEMU and AFL-gcc reach 23.26% and 84.59% of the paths discovered by AFL-SNAP, respectively.

} Higher throughput of SNAP is the key contributor to its outperformance.

Fig 11. The overall covered paths from fuzzing Binutils v2.28 for 24 hours.

CCS 2021

Discussion 22

} Usage beyond fuzzing:
} Efficient coverage estimation for unit testing.
} Execution fingerprint for logging and forensic purposes.
} Approximated performance metrics in a specific code region.

¨ E.g., branch prediction results.

} Limitations:
} Kernel coverage filtered by the privilege level.
} Dynamic code generation with reused code pages.

¨ E.g., JIT and library loading/unloading.

} Dedicated buffer for coverage bitmap storage.

} We hope SNAP motivates future studies and adoption on custom ASICs.

CCS 2021

Conclusion 23

} SNAP: a customized hardware platform for better fuzzing performance and precision.
} We prototyped SNAP in an FPGA evaluation platform at full-system level.

} By leveraging micro-architectural optimizations, SNAP enabled:
} Transparent hardware-based tracing.
} Richer feedback on execution states.

} The adopted fuzzer running on SNAP (AFL-SNAP) achieved:
} 41% and 228x higher fuzzing throughput compared to AFL-gcc and AFL-QEMU.
} Thus, higher code coverage throughout fuzzing.
} Dramatically lower cost for fuzzing-as-a-service.

} SNAP is available at https://github.com/sslab-gatech/SNAP.

at near-zero performance cost.

https://github.com/sslab-gatech/SNAP

CCS 2021

24

Thank you!
Questions?

