
Relocate-Vote: Using Sparsity Information
to Exploit Ciphertext Side-Channels

Yuqin Yan† Wei Huang†‡ Ilya Grishchenko†

Gururaj Saileshwar† Aastha Mehta∗ David Lie†

†University of Toronto
‡Seneca Polytechnic

∗University of British Columbia

1



Confidential Computing

Threat model

Untrusted hypervisor

Trusted hardware and firmware

Cloud service providers (CSPs)

Trusted hardware

AMD SEV-SNP

Hardware and Firmware

Hypervisor

Confidential VM Co-located VMs

Trusted Untrusted

2



Confidential Computing

Threat model

Untrusted hypervisor

Trusted hardware and firmware

Cloud service providers (CSPs)

Trusted hardware

AMD SEV-SNP

Hardware and Firmware

Hypervisor

Confidential VM Co-located VMs

Trusted Untrusted

2



SEV-SNP: Address-dependent Deterministic Memory Encryption

Visibility: Ciphertext is visible to the hypervisor

Each memory location has unique encryption parameters (tweaks)
▶ Same plaintext → different ciphertexts at different locations

Determinism: At a fixed location: Same plaintext → same ciphertext
▶ Ciphertext side-channels: CIPHERLEAKS [SEC’21], Li et al. [Oakland’22], HyperTheft

[CCS’24], CipherSteal [Oakland’25]
⋆ Only attacks at fixed locations
⋆ Learned ciphertexts at a location are not useful for other locations

Plaintext: 0

EncK (tweak1) EncK (tweak2)

0xA1B2C3D4 0x9F8E7D6C

PhysAddr1 PhysAddr2

3



SEV-SNP: Address-dependent Deterministic Memory Encryption

Visibility: Ciphertext is visible to the hypervisor

Each memory location has unique encryption parameters (tweaks)
▶ Same plaintext → different ciphertexts at different locations

Determinism: At a fixed location: Same plaintext → same ciphertext
▶ Ciphertext side-channels: CIPHERLEAKS [SEC’21], Li et al. [Oakland’22], HyperTheft

[CCS’24], CipherSteal [Oakland’25]
⋆ Only attacks at fixed locations
⋆ Learned ciphertexts at a location are not useful for other locations

Plaintext: 0

EncK (tweak1) EncK (tweak2)

0xA1B2C3D4 0x9F8E7D6C

PhysAddr1 PhysAddr2

3



Relocate-Vote: SEV-SNP’s Hardware-assisted Page Relocation

Hardware assists in re-encrypting the relocated pages

SEV-SNP commands support page relocation
▶ SNP PAGE MOVE: Direct relocation for memory de-fragmentation
▶ SNP PAGE SWAP: Moving page in/out of disk for memory over-commitment

Controlled relocation: The hypervisor controls the destination page frame

SNP PAGE MOVE

Memory de-fragmentation

Disk

Memory over-commitment

CVM private pages

Other pages

SNP PAGE SWAP OUT

SNP PAGE SWAP IN

4



Relocate-Vote: Exploiting Relocation Mechanism

Plaintext: 0

EncK (tweak1) EncK (tweak2)

0xA1B2C3D4 0x9F8E7D6C

SNP PAGE MOVE SNP PAGE MOVE

EncK (tweak3)

0xF87A9B0C

PhysAddr3

Plaintext frequency preserved in ciphertext

Exploit existing values across memory locations
▶ Break tweaked encryption’s spatial protection

5



Relocate-Vote: Exploiting Frequency under Tweaked Encryption

Plaintext: 0

EncK (tweak1) EncK (tweak2)

0xA1B2C3D4 0x9F8E7D6C

SNP PAGE MOVE SNP PAGE MOVE

EncK (tweak3)

0xF87A9B0C

PhysAddr3

Infer the ciphertexts of prevalent values (e.g., zero)
▶ Relocate CVM’s pages onto the same page frame
▶ Collect the re-encrypted ciphertexts

⋆ Vote for frequencies

▶ Zero is a prevalent value in CVMs

Test arbitrary memory locations
▶ Relocate a page onto the above page frame
▶ Examine if ciphertexts match the prevalent ones

Leverage patterns of prevalent and non-prevalent
values

5



Relocate-Vote: Exploiting Frequency under Tweaked Encryption

Test a CVM’s private page:
blocks: zero memory locations
blocks: non-zero memory locations

Infer the ciphertexts of prevalent values (e.g., zero)
▶ Relocate CVM’s pages onto the same page frame
▶ Collect the re-encrypted ciphertexts

⋆ Vote for frequencies

▶ Zero is a prevalent value in CVMs

Test arbitrary memory locations
▶ Relocate a page onto the above page frame
▶ Examine if ciphertexts match the prevalent ones

Leverage patterns of prevalent and non-prevalent
values

5



Relocate-Vote: Exploiting Frequency under Tweaked Encryption

Test a CVM’s private page:
blocks: zero memory locations
blocks: non-zero memory locations

Infer the ciphertexts of prevalent values (e.g., zero)
▶ Relocate CVM’s pages onto the same page frame
▶ Collect the re-encrypted ciphertexts

⋆ Vote for frequencies

▶ Zero is a prevalent value in CVMs

Test arbitrary memory locations
▶ Relocate a page onto the above page frame
▶ Examine if ciphertexts match the prevalent ones

Leverage patterns of prevalent and non-prevalent
values

5



De-randomize ASLR with Relocate-Vote

ASLR: Address Space Layout Randomization
▶ Randomizes memory layout
▶ Prevents predictable addresses for exploitation,

such as glibc’s addresses for ROP.

Our attack infers glibc’s location:
▶ Base address (guest virtual address, GVA)
▶ Queries services provided by the victim application
▶ No direct code execution inside the CVM

Text
Heap

mmap
glibc

stack

Layout 1

Text
Heap

mmap
glibc

stack

Userspace

Layout 2

6



De-randomize ASLR with Relocate-Vote

ASLR: Address Space Layout Randomization
▶ Randomizes memory layout
▶ Prevents predictable addresses for exploitation,

such as glibc’s addresses for ROP.

Our attack infers glibc’s location:
▶ Base address (guest virtual address, GVA)
▶ Queries services provided by the victim application
▶ No direct code execution inside the CVM

Text
Heap

mmap
glibc

stack

Layout 1

Text
Heap

mmap
glibc

stack

Userspace

Layout 2

6



De-randomize ASLR: Sparsity in Page Tables

Page Table Page
(Layout 1)

Page Table Page
(Layout 2)

shifts under ASLR

Mapped regions (non-zeroed entries) alternate with unmapped regions (zeroed entries)
▶ ASLR shifts the mapped regions → shifts the non-zero blocks

GVA slices index page table entries → Offsets of entries reveal GVA slices

Address translation walks through page table levels: PGD → PUD → PMD → PTE

7



De-randomize ASLR: Sparsity in Page Tables

GVA slice 1
(bits 39–47)

GVA slice 2
(bits 30–38) The other bits

Guest Virtual Address (GVA as the secret)

in-page offset

PGD Page
(Page Global Directory)

Mapped regions (non-zeroed entries) alternate with unmapped regions (zeroed entries)
▶ ASLR shifts the mapped regions → shifts the non-zero blocks

GVA slices index page table entries → Offsets of entries reveal GVA slices

Address translation walks through page table levels: PGD → PUD → PMD → PTE

7



De-randomize ASLR: Sparsity in Page Tables

GVA slice 1
(bits 39–47)

GVA slice 2
(bits 30–38) The other bits

Guest Virtual Address (GVA as the secret)

PGD Page
(Page Global Directory)

PUD Page
(Page Upper Directory)

· · ·

Mapped regions (non-zeroed entries) alternate with unmapped regions (zeroed entries)
▶ ASLR shifts the mapped regions → shifts the non-zero blocks

GVA slices index page table entries → Offsets of entries reveal GVA slices

Address translation walks through page table levels: PGD → PUD → PMD → PTE

7



De-randomize ASLR: End-to-end Attack and Results

Offline phase
▶ Profiles on attacker’s own CVM
▶ Prepares the classifiers for identifying page table pages and producing offsets

Online phase
▶ Triggers the service accessing glibc symbols provided by the victim CVM
▶ Applies classifiers to the accessed pages

Results: 8,388,608 possibilities reduced to 35-104 on average
▶ 5 server applications (nginx, apache, memcached, redis, and mysql)
▶ 10 different memory layouts per application

8



De-randomize ASLR: End-to-end Attack and Results

Offline phase
▶ Profiles on attacker’s own CVM
▶ Prepares the classifiers for identifying page table pages and producing offsets

Online phase
▶ Triggers the service accessing glibc symbols provided by the victim CVM
▶ Applies classifiers to the accessed pages

Results: 8,388,608 possibilities reduced to 35-104 on average
▶ 5 server applications (nginx, apache, memcached, redis, and mysql)
▶ 10 different memory layouts per application

8



Other Attack Scenarios with Relocate-Vote

Original Recovered

Extract 3D object constructed from CT scanning

Predicted coordinates of the places from activation patterns

OpenVDB: Library for representing and processing sparse 3D voxel grids
▶ Extracts voxel distributions from the victim’s construction and read-only traversal operations

Sparse LLM: LLM with ReLU activations
▶ Decodes geographical information about the processed prompts from activation patterns

More details in our paper

9



Other Attack Scenarios with Relocate-Vote

Original Recovered

Extract 3D object constructed from CT scanning Predicted coordinates of the places from activation patterns

OpenVDB: Library for representing and processing sparse 3D voxel grids
▶ Extracts voxel distributions from the victim’s construction and read-only traversal operations

Sparse LLM: LLM with ReLU activations
▶ Decodes geographical information about the processed prompts from activation patterns

More details in our paper

9



Mitigation

Mitigating sparsity leakage at the software level
▶ ↓ Compatibility and performance

Restricting the hypervisor’s relocation ability
▶ A new guest policy in SEV-SNP: PAGE SWAP DISABLE
▶ ↓ Hypervisor’s ability of memory resources management

Enforcing ciphertext-hiding in SEV-SNP instances
▶ ↓ Specific hardware required
▶ ↓ Limited availability of supported SEV-SNP instances in major CSPs

10



Conclusion

Relocate (page relocation) and Vote (frequency analysis)
▶ Leaks ciphertexts of prevalent values
▶ Tests arbitrary memory locations

Recovered sparsity information in CVMs
▶ ASLR, OpenVDB, sparse LLM
▶ Various operations: lookup, construction, traversal

Exacerbated implications for ciphertext side channels
▶ Broadens attack scenarios—no ciphertext updates or collisions
▶ Cross-location ciphertext knowledge transfer

Mitigation is required
▶ Security brief AMD-SB-3021 by AMD

11


